XX采药

// 描述    XX是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师。为此,他想拜附近最有威望的医师
// 为师。医师为了判断他的资质,给他出了一个难题。医师把他带到一个到处都是草药的山洞里对他说:“孩子
// ,这个山洞里有一些不同的草药,采每一株都需要一些时间,每一株也有它自身的价值。我会给你一段时间,
// 在这段时间里,你可以采到一些草药。如果你是一个聪明的孩子,行你应该可以让采到的草药的总价值最大”。
// 如果你是XX,你能完成这个任务吗? 输入格式    多组数据,每两个整数,用空格隔开,第一行有两个整
// 数T(1 <= T <= 1000)和M(1 <= M <= 100),用一个空格隔开,T代表总共能够用来采药的时间,M代表山洞
// 里的草药的数目。接下来的M行每行包括两个在1到100之间(包括1和100)的整数,分别表示采摘某株草药的时
// 间和这株草药的价值。 输出格式    输出包括一行,这一行只包含一个整数,表示在规定的时间内,可以采到
// 的草药的最大总价值。

//动态规划
//
//

#include "stdio.h"
#include "iostream"

using namespace std;
int T,M;//总时间,药材总数
int Jia[101];//每棵药材的价值
int Shi[101];//采每棵药材的时间
int c[101][1001];//c[i][t]表示在t时间内采药材获得的最大收益,但要求所采的药材编号不超过i
int max(int a,int b);
int proceed(int i,int t);//返回c[i][t]

int main(int argc, char* argv[])
{
// 	_int64 i=0;
// 	scanf("%I64d",&i);
// 	printf("%d\n",sizeof(i));
// 	printf("%I64d",i);

	//读入数据
	while(cin>>T>>M){
		memset(c,-1,sizeof(c));
		for (int i=1;i<=M;i++)
		{
			cin>>Shi[i]>>Jia[i];
		}
		int result=proceed(M,T);
		cout<<result<<endl;
	}
	
	return 0;
}
//自顶向下
//每棵药材有自己的编号,从1到M
//c[i][t]表示在t时间内采药材获得的最大收益,但要求所采的药材编号不超过i
//根据第i棵药材,不采 或 采
//不采:直接用c[i-1][t]赋值
//采:用第i棵药材的价值加上 c[i-1][t-Shi[i]],既然决定采第i棵药材,那么总时间必定会减少Shi[i],
//我们能用剩下的时间t-Shi[i]采药
//c[i][t]=max(c[i-1][t],Jia[i]+c[i-1][t-Shi[i]])
int  proceed(int i,int t){

	//如果只有权采编号为1的药材,判断它能不能采得了
	if (i==1)
	{
		if(t>=Shi[1])
			c[i][t]=Jia[1];
		else
			c[i][t]=0;//初始情况下c[i][t]是-1,把它置零表示该结点已经访问过了
	}
	else{
		//如果还没决定在t时间内编号小于i的药材采集方案,先做出决定
		if (c[i-1][t]==-1)
		{
			proceed(i-1,t);
		}
		//更新
		c[i][t]=max(c[i-1][t],c[i][t]);

		//判断第i棵药材要不要采

//注意!!!
		//此处必须检查t>Shi[i],你要确保决定采第i棵药材后还剩下时间,否则
		//数组二维越界,而编译器不报错,会调很久
		if (t-Shi[i]>=0)
		{
			if (c[i-1][t-Shi[i]]==-1)
			{
				proceed(i-1,t-Shi[i]);
			}
			c[i][t]=max( c[i][t]  ,  c[i-1][t-Shi[i]]+Jia[i]   );
		}
	}
	return c[i][t];
}
int max(int a,int b){
	return a>b?a:b;
}


【无人机】基于改进粒子群算法的无人机路径规划研究[和遗传算法、粒子群算法进行比较](Matlab代码实现)内容概要:本文围绕基于改进粒子群算法的无人机路径规划展开研究,重点探讨了在复杂环境中利用改进粒子群算法(PSO)实现无人机三维路径规划的方法,并将其与遗传算法(GA)、标准粒子群算法等传统优化算法进行对比分析。研究内容涵盖路径规划的多目标优化、避障策略、航路点约束以及算法收敛性和寻优能力的评估,所有实验均通过Matlab代码实现,提供了完整的仿真验证流程。文章还提到了多种智能优化算法在无人机路径规划中的应用比较,突出了改进PSO在收敛速度和全局寻优方面的优势。; 适合人群:具备一定Matlab编程基础和优化算法知识的研究生、科研人员及从事无人机路径规划、智能优化算法研究的相关技术人员。; 使用场景及目标:①用于无人机在复杂地形或动态环境下的三维路径规划仿真研究;②比较不同智能优化算法(如PSO、GA、蚁群算法、RRT等)在路径规划中的性能差异;③为多目标优化问题提供算法选型和改进思路。; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,重点关注算法的参数设置、适应度函数设计及路径约束处理方式,同时可参考文中提到的多种算法对比思路,拓展到其他智能优化算法的研究与改进中。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值