迁移率随载流子浓度变化

载流子迁移率随载流子浓度变化,弱场下几乎保持恒定,然而随着载流子浓度变大,迁移率开始下降
在这里插入图片描述
从上面的公式可以得出,在浓度很小的时候,迁移率保持在最大值,当浓度比参考浓度大很多的时候,迁移率就变成了最小值。
在强场下,还需要引入另外的因子:
在这里插入图片描述

参考文献
Electron Mobility Models for 4H, 6H, and 3C SiC

### 使用 MATLAB 计算或模拟半导体中载流子浓度 #### 软件工具与环境设置 为了在 MATLAB 中计算或模拟半导体中的载流子浓度,通常需要利用偏微分方程 (PDE) 工具箱来解决泊松方程连续性方程。MATLAB 的 PDE Toolbox 支持多种数值方法,包括有限元法(FEM),这使得求解复杂的物理现象成为可能[^1]。 #### 定义材料参数 对于特定类型的半导体材料(如硅),定义其基本属性非常重要。这些属性包括但不限于带隙能量、有效状态密度、迁移率等。对于本征半导体,在给定温度下可以通过已知的关系式确定载流子浓度;而对于杂质半导体,则需考虑掺杂水平的影响[^2]。 #### 创建几何结构并划分网格 根据所研究的具体器件设计相应的二维或三维几何形状,并对其进行适当离散化处理以便后续分析。此过程可通过 `geometryFromEdges` 或者导入外部 STL 文件实现。 #### 设置边界条件 应用合适的边界条件至关重要,比如欧姆接触、肖特基势垒或者其他形式的表面效应。这些可以在创建模型时通过指定边界的性质完成配置。 #### 编写脚本进行仿真 下面是一个简单的例子展示如何编写一段用于估算 n 型 Si 半导体内平衡态下的少数载流子分布情况: ```matlab % 参数初始化 T = 300; % 温度 K ni = 1.5e10 * exp(-((1.12 - Eg(T)) / (kB*T))); % 本征载流子浓度 cm^-3, kB 是玻尔兹曼常数 Nd = 1e16; % 掺杂浓度 cm^-3 Eg = @(T) 1.17 - 4.73e-4*(T^2/(T+636)); % 硅的禁带宽度随温度变化函数 eV % 解析表达式获取少子浓度 np = ni.^2 ./ Nd; disp(['At T=', num2str(T), 'K, the minority carrier concentration is ',num2str(np),'cm^-3']); ``` 这段代码仅提供了一个静态场景下的近似估计。实际工程实践中往往涉及动态行为的研究,这时就需要更复杂的方法论支持,例如采用时间步进算法迭代更新各时刻的状态变量直至达到稳定收敛为止。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值