Fast Approximate Energy Minimization via Graph Cuts

本文介绍了通过图割法实现快速近似能量最小化的方法,包括问题描述、两种算法的探讨,以及详细阐述如何解决子优化问题,如最优alpha-beta交换和扩张动作,最终重点讨论了图割算法的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Fast Approximate Energy Minimization via Graph Cuts

1. 问题描述

该文章中提出两种算法来解决以下能量最小化问题:


其中p,q为像素坐标,f为像素标记,V表示互动势能(interactive potential/energy),D表示单点势能(unary potential),也可以称为保真度,即该标记与其对应像素的契合程度。
这类问题中标记V的取值空间可为任意有限集合,本文所解决的能量最小化问题中,标记节点之间的互动连接的惩罚函数(互动势能)V应具有Metric和Semimetric性质。所谓Metric性质应满足一下三个条件:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值