IO基础入门之I/O多路复用技术

在I/O编程过程中,当需要同时处理多个客户端接入请求时,可以利用多线程或者I/O多路复用技术进行处理。I/O多路复用技术通过把多个I/O的阻塞复用到同一个select的阻塞上,从而使得系统在单线程的情况下可以同时处理多个客户端请求。与传统的多线程/多进程模型比,I/O多路复用的最大优势是系统开销小,系统不需要创建新的额外进程或者线程,也不需要维护这些进程和线程的运行,降底了系统的维护工作量,节省了系统资源,I/O多路复用的主要应用场景如下:
    服务器需要同时处理多个处于监听状态或者多个连接状态的套接字。
    服务器需要同时处理多种网络协议的套接字。

目前支持I/O多路复用的系统调用有 select,pselect,poll,epoll,在Linux网络编程过程中,很长一段时间都使用select做轮询和网络事件通知,然而select的一些固有缺陷导致了它的应用受到了很大的限制,最终Linux不得不在新的内核版本中寻找select的替代方案,最终选择了epoll。epoll与select的原理比较类似,为了克服select的缺点,epoll作了很多重大改进,现总结如下:

1. 支持一个进程打开的socket描述符(FD)不受限制(仅受限于操作系统的最大文件句柄数)。
select最大的缺陷就是单个进程所打开的FD是有一定限制的,它由FD_SETSIZE设置,默认值是1024。对于那些需要支持上万个TCP连接的大型服务器来说显然太少了。可以选择修改这个宏,然后重新编译内核,不过这会带来网络效率的下降。我们也可以通过选择多进程的方案(传统的Apache方案)解决这个问题,不过虽然在Linux上创建进程的代价比较小,但仍旧是不可忽视的,另外,进程间的数据交换非常麻烦,对于Java由于没有共享内存,需要通过Socket通信或者其他方式进行数据同步,这带来了额外的性能损耗,增加了程序复杂度,所以也不是一种完美的解决方案。值得庆幸的是,epoll并没有这个限制,它所支持的FD上限是操作系统的最大文件句柄数,这个数字远远大于1024。例如,在1GB内存的机器上大约是10万个句柄左右,具体的值可以通过cat/proc/sys/fs/filemax察看,通常情况下这个值跟系统的内存关系比较大。

2. I/O效率不会随着FD数目的增加而线性下降。
传统的select/poll另一个致命弱点就是当你拥有一个很大的socket集合,由于网络延时或者链路空闲,任一时刻只有少部分的socket是“活跃”的,但是select/poll每次调用都会线性扫描全部集合,导致效率呈现线性下降。epoll不存在这个问题,它只会对“活跃”的socket进行操作-这是因为在内核实现中epoll是根据每个fd上面的callback函数实现的,那么,只有“活跃”的socket才会主动的去调用callback函数,其他idle状态socket则不会。在这点上,epoll实现了一个伪AIO。针对epoll和select性能对比的benchmark测试表明:如果所有的socket都处于活跃态。例如一个高速LAN环境,epoll并不比select/poll效率高太多;相反,如果过多使用epoll_ctl,效率相比还有稍微的下降。但是一旦使用idle connections模拟WAN环境,epoll的效率就远在select/poll之上了。

3. 使用mmap加速内核与用户空间的消息传递
无论是select,poll还是epoll都需要内核把FD消息通知给用户空间,如何避免不必要的内存复制就显得非常重要,epoll是通过内核和用户空间mmap使用同一块内存实现。

4. epoll的API更加简单
用来克服select/poll缺点的方法不只有epoll,epoll只是一种Linux的实现方案。在freeBSD下有kqueue,而dev/poll是最古老的Solaris的方案,使用难度依次递增。但epoll更加简单。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值