《程序设计基础》 第十章 函数与程序结构 6-13 分治法求解金块问题 (20 分)

该程序样例展示了如何通过分治法实现寻找数组中最大值和最小值的两个递归函数。输入一个正整数N和N个整数,程序会返回数组的最大值和最小值。当N在2到100之间时,程序正常运行,否则输出InvalidValue。提供的max和min函数分别遍历数组以找到最大值和最小值。
摘要由CSDN通过智能技术生成

老板有一袋金块(共n块,2≤n≤100),两名最优秀的雇员每人可以得到其中的一块,排名第一的得到最重的金块,排名第二的则得到袋子中最轻的金块。

输入一个正整数N(2≤N≤100)和N个整数,用分治法求出最重金块和最轻金块。

本题要求实现2个函数,分别使用分治法在数组中找出最大值、最小值。

函数接口定义:

int max(int a[ ], int m, int n); 
int min(int a[ ], int m, int n);    

递归函数max用分治法求出a[m]~a[n]中的最大值并返回。

递归函数min用分治法求出a[m]~a[n]中的最小值并返回。

裁判测试程序样例:

#include <stdio.h>
#define MAXN 101

int max(int a[ ], int m, int n); 
int min(int a[ ], int m, int n);

int main(void)
{
    int i, n; 
    int a[MAXN]; 

    scanf ("%d", &n); 
    if(n >= 2 && n <= MAXN-1 ){
        for(i = 0; i < n; i++){ 
            scanf ("%d", &a[i]); 
        }
        printf("max = %d\n", max(a, 0, n-1));
        printf("min = %d\n", min(a, 0, n-1));
    }else{
        printf("Invalid Value.\n");    
    }

    return 0;
}


/* 请在这里填写答案 */

输入样例:

6
3 9 4 9 2 4

结尾无空行

输出样例:

max = 9
min = 2

结尾无空行

int max(int a[ ], int m, int n){
	int i;
	int max = a[0];
	for (i = m;i < n+1;i++){
		if (a[i] > max){
			max = a[i];
		}
	}
	return max;
} 
int min(int a[ ], int m, int n){
	int i;
	int min = a[0];
	for (i = m;i < n+1;i++){
		if (a[i] < min){
			min = a[i];
		}
	}
	return min;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

茶然o

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值