分治法求金块问题java_递归与分治策略——金块问题

问题

老板有一袋金块。每个月将有两名雇员会因其优异的表现分别被奖励一个金块。按规矩,排名第一的雇员将得到袋中最重的金块,排名第二的雇员将得到袋中最轻的金块。根据这种方式,除非有新的金块加入袋中,否则第一名雇员所得到的金块总是比第二名雇员所得到的金块重。如果有新的金块周期性的加入袋中,则每个月都必须找出最轻和最重的金块。假设有一台比较重量的仪器,我们希望用最少的比较次数找出最轻和最重的金块。

代码

#include

#include

int compare1(int i,int j,int a[])//找最大值

{

int m1,m2,mid,max=0;

if(i==j)

max=a[i];//当分组的下标i与j相等时,将a[i]赋给最大值

else if(i==j-1)//当分组的下标i与j相等时,判断a[i]与a[j]大小并赋予max值

{

if(a[i]>=a[j])

max=a[i];

else

max=a[j];

}

else

{

mid=i+(j-i)/2;//找到中点

m1=compare1(i,mid,a);//递归找出第一组最大值m1

m2=compare1(mid+1,j,a);//递归找出第二组最大值m2

if(m1>=m2)//判断m1和m2的大小,得到最大值max

max=m1;

else

max=m2;

return max;//返回值max

}

}

int compare2(int i,int j,int a[])//找最小值

{

int n1,n2,mid,min=0;

if(i==j)

min=a[i];//当分组的下标i与j相等时,将a[i]赋给最大值和最小值

else if(i==j-1)//当分组的下标i与j相等时,判断a[i]与a[j]大小并赋予max,min值

{

if(a[i]<=a[j])

min=a[i];

else

min=a[j];

}

else

{

mid=i+(j-i)/2;//找到中点

n1=compare2(i,mid,a);//递归找出第一组最小值n1

n2=compare2(mid+1,j,a);//递归找出第二组最小值n2

if(n1<=n2)//判断n1和n2的大小,得到最小值min

min=n1;

else

min=n2;

return min;//返回值min

}

}

int main()

{

int n,i=0,a[100],s,t;//定义变量

scanf("%d",&n);//输入数组大小

for(;i

{

scanf("%d",&a[i]);//循环输入数组元素

}

s=compare1(0,n-1,a);//利用函数compare1找出最大值s

t=compare2(0,n-1,a);//利用函数compare2找出最小值t

printf("%d %d",s,t);//输出最大值和最小值

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值