Prim(普利姆)算法+Kruskal(克鲁斯卡尔)算法

Prim与Kruskal算法详解
本文详细介绍了Prim算法和Kruskal算法两种用于求解最小生成树问题的经典算法。内容覆盖了算法原理、实现步骤、图例演示及代码实现等方面。

Prim(普利姆)算法

1.概览

普里姆算法Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树。意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点英语Vertex (graph theory),且其所有边的权值之和亦为最小。该算法于1930年由捷克数学家沃伊捷赫·亚尔尼克英语Vojtěch Jarník发现;并在1957年由美国计算机科学家罗伯特·普里姆英语Robert C. Prim独立发现;1959年,艾兹格·迪科斯彻再次发现了该算法。因此,在某些场合,普里姆算法又被称为DJP算法、亚尔尼克算法或普里姆-亚尔尼克算法。

 

2.算法简单描述

1).输入:一个加权连通图,其中顶点集合为V,边集合为E;

2).初始化:Vnew = {x},其中x为集合V中的任一节点(起始点),Enew = {},为空;

3).重复下列操作,直到Vnew = V:

a.在集合E中选取权值最小的边<u, v>,其中u为集合Vnew中的元素,而v不在Vnew集合当中,并且v∈V(如果存在有多条满足前述条件即具有相同权值的边,则可任意选取其中之一);

b.将v加入集合Vnew中,将<u, v>边加入集合Enew中;

4).输出:使用集合Vnew和Enew来描述所得到的最小生成树。

 

下面对算法的图例描述

图例说明不可选可选已选(Vnew
 

此为原始的加权连通图。每条边一侧的数字代表其权值。 - - -

顶点D被任意选为起始点。顶点ABEF通过单条边与D相连。A是距离D最近的顶点,因此将A及对应边AD以高亮表示。 C, G A, B, E, F D
 

下一个顶点为距离DA最近的顶点。BD为9,距A为7,E为15,F为6。因此,FDA最近,因此将顶点F与相应边DF以高亮表示。 C, G B, E, F A, D
算法继续重复上面的步骤。距离A为7的顶点B被高亮表示。 C B, E, G A, D, F
 

在当前情况下,可以在CEG间进行选择。CB为8,EB为7,GF为11。E最近,因此将顶点E与相应边BE高亮表示。 C, E, G A, D, F, B
 

这里,可供选择的顶点只有CGCE为5,GE为9,故选取C,并与边EC一同高亮表示。 C, G A, D, F, B, E

顶点G是唯一剩下的顶点,它距F为11,距E为9,E最近,故高亮表示G及相应边EG G A, D, F, B, E, C

现在,所有顶点均已被选取,图中绿色部分即为连通图的最小生成树。在此例中,最小生成树的权值之和为39。 A, D, F, B, E, C, G

 

3.简单证明prim算法

反证法:假设prim生成的不是最小生成树

1).设prim生成的树为G0

2).假设存在Gmin使得cost(Gmin)<cost(G0)   则在Gmin中存在<u,v>不属于G0

3).将<u,v>加入G0中可得一个环,且<u,v>不是该环的最长边(这是因为<u,v>∈Gmin)

4).这与prim每次生成最短边矛盾

5).故假设不成立,命题得证.

 

 

 4.算法代码实现

#define MAX  100000
#define VNUM  10+1                                             //这里没有ID为0的点,so id号范围1~10

int edge[VNUM][VNUM]={/*输入的邻接矩阵*/};
int lowcost[VNUM]={0};                                         //记录Vnew中每个点到V中邻接点的最短边
int addvnew[VNUM];                                             //标记某点是否加入Vnew
int adjecent[VNUM]={0};                                        //记录V中与Vnew最邻近的点


void prim(int start)
{
     int sumweight=0;
     int i,j,k=0;

     for(i=1;i<VNUM;i++)                                      //顶点是从1开始
     {
        lowcost[i]=edge[start][i];
        addvnew[i]=-1;                                         //将所有点至于Vnew之外,V之内,这里只要对应的为-1,就表示在Vnew之外
     }

     addvnew[start]=0;                                        //将起始点start加入Vnew
     adjecent[start]=start;
                                                 
     for(i=1;i<VNUM-1;i++)                                        
     {
        int min=MAX;
        int v=-1;
        for(j=1;j<VNUM;j++)                                      
        {
            if(addvnew[j]!=-1&&lowcost[j]<min)                 //在Vnew之外寻找最短路径
            {
                min=lowcost[j];
                v=j;
            }
        }
        if(v!=-1)
        {
            printf("%d %d %d\n",adjecent[v],v,lowcost[v]);
            addvnew[v]=0;                                      //将v加Vnew中

            sumweight+=lowcost[v];                             //计算路径长度之和
            for(j=1;j<VNUM;j++)
            {
                if(addvnew[j]==-1&&edge[v][j]<lowcost[j])      
                {
                    lowcost[j]=edge[v][j];                     //此时v点加入Vnew 需要更新lowcost
                    adjecent[j]=v;                             
                }
            }
        }
    }
    printf("the minmum weight is %d",sumweight);
}

Kruskal(克鲁斯卡尔)算法

 

1.概览

Kruskal算法是一种用来寻找最小生成树的算法,由Joseph Kruskal在1956年发表。用来解决同样问题的还有Prim算法和Boruvka算法等。三种算法都是贪婪算法的应用。和Boruvka算法不同的地方是,Kruskal算法在图中存在相同权值的边时也有效。

 

2.算法简单描述

1).记Graph中有v个顶点,e个边

2).新建图Graphnew,Graphnew中拥有原图中相同的e个顶点,但没有边

3).将原图Graph中所有e个边按权值从小到大排序

4).循环:从权值最小的边开始遍历每条边 直至图Graph中所有的节点都在同一个连通分量中

                if 这条边连接的两个节点于图Graphnew中不在同一个连通分量中

                                         添加这条边到图Graphnew

 

图例描述:

首先第一步,我们有一张图Graph,有若干点和边 

 

将所有的边的长度排序,用排序的结果作为我们选择边的依据。这里再次体现了贪心算法的思想。资源排序,对局部最优的资源进行选择,排序完成后,我们率先选择了边AD。这样我们的图就变成了右图

 

 

 

在剩下的变中寻找。我们找到了CE。这里边的权重也是5

依次类推我们找到了6,7,7,即DF,AB,BE。

下面继续选择, BC或者EF尽管现在长度为8的边是最小的未选择的边。但是现在他们已经连通了(对于BC可以通过CE,EB来连接,类似的EF可以通过EB,BA,AD,DF来接连)。所以不需要选择他们。类似的BD也已经连通了(这里上图的连通线用红色表示了)。

最后就剩下EG和FG了。当然我们选择了EG。最后成功的图就是右:

 

 

 

3.简单证明Kruskal算法

对图的顶点数n做归纳,证明Kruskal算法对任意n阶图适用。

归纳基础:

n=1,显然能够找到最小生成树。

归纳过程:

假设Kruskal算法对n≤k阶图适用,那么,在k+1阶图G中,我们把最短边的两个端点a和b做一个合并操作,即把u与v合为一个点v',把原来接在u和v的边都接到v'上去,这样就能够得到一个k阶图G'(u,v的合并是k+1少一条边),G'最小生成树T'可以用Kruskal算法得到。

我们证明T'+{<u,v>}是G的最小生成树。

用反证法,如果T'+{<u,v>}不是最小生成树,最小生成树是T,即W(T)<W(T'+{<u,v>})。显然T应该包含<u,v>,否则,可以用<u,v>加入到T中,形成一个环,删除环上原有的任意一条边,形成一棵更小权值的生成树。而T-{<u,v>},是G'的生成树。所以W(T-{<u,v>})<=W(T'),也就是W(T)<=W(T')+W(<u,v>)=W(T'+{<u,v>}),产生了矛盾。于是假设不成立,T'+{<u,v>}是G的最小生成树,Kruskal算法对k+1阶图也适用。

由数学归纳法,Kruskal算法得证。

 4.算法代码实现:

#include<cstdio>  
#include<algorithm>    
using namespace std;    
struct Edge    
{    
    int f,t,q;    
};    
Edge s[10000];    
bool cmp(Edge a,Edge b )    
{    
    return a.q<b.q;    
}    
int pre[100];    
int Find(int p)   //并查集 找根   
{    
    while(p!=pre[p])    
    p=pre[p];    
    return p;    
}    
void Merge(int x,int y)  //   
{    
    int fx=Find(x);    
    int fy=Find(y);    
    if(fx!=fy)    
    pre[fx]=fy;    
}    
int main()    
{    
    int n,m;    
    while(scanf("%d",&n),n)    
    {    
        m=n*(n-1)/2;    
        for(int i=1;i<=n;i++)    
        {    
            pre[i]=i;    
        }    
        for(int j=0;j<m;j++)    
        {    
            scanf("%d%d%d",&s[j].f,&s[j].t,&s[j].q);    
        }    
        sort(s,s+m,cmp);  //排序   
        int sum=0;    
        for(int j=0;j<m;j++)    
        {    
            int fx=Find(s[j].f);    
            int fy=Find(s[j].t);    
            if(fx!=fy)  //在这里判断  
            {    
             sum=sum+s[j].q;    
             Merge(s[j].f,s[j].t);    
            }    
        }    
        printf("%d\n",sum);    
    }    
    return 0;    
}


 

### 普里姆算法克鲁斯卡尔算法对比 #### 算法原理差异 普里姆算法的核心在于每一步都形成一棵树。这意味着在整个执行过程中,所选边总是会将新的顶点加入到现有的单棵树结构中[^1]。与此不同的是,克鲁斯卡尔算法在处理图的过程中可能会暂时创建多棵独立的小树(即森林),直到最终这些小树通过合适的边相互连接成为完整的最小生成树。 #### 数据结构需求 对于普里姆算法而言,通常采用优先队列来高效选取下一个要添加至当前树中的节点;而对于克鲁斯卡尔算法,则更倾向于利用并查集数据结构来进行高效的连通性检测以及循环预防操作。 #### 时间复杂度分析 两种算法的时间性能取决于具体实现方式及其适用条件。当面对稠密图时,由于每次迭代都需要更新大量候选边的信息,因此基于斐波那契堆优化后的普里姆算法能够展现出较好的效率表现。然而,在稀疏图场景下,如果可以预先对所有边按权重排序的话,那么克鲁斯卡尔算法则能凭借其简单的贪心策略获得更快的速度优势。 #### 应用场景举例 - **网络设计问题**:假设某公司计划铺设光纤通信线路覆盖全国主要城市,并希望总成本最低。此时可考虑使用普里姆算法从任一选定起点出发逐步扩展最优路径直至遍历全部目标地点。 - **电路板布线规划**:电子设备内部PCB布局往往涉及众多元件间的电气连接关系。为了确保信号传输质量同时减少材料消耗,工程师们可以选择应用克鲁斯卡尔算法寻找全局范围内代价最少的一组导线配置方案。 ```python def prim_mst(graph): import heapq mst = [] visited = set() start_vertex = list(graph.keys())[0] edges = [(weight, start_vertex, neighbor) for neighbor, weight in graph[start_vertex].items()] heapq.heapify(edges) while edges: weight, u, v = heapq.heappop(edges) if v not in visited: visited.add(v) mst.append((u, v, weight)) for next_node, w in graph[v].items(): if next_node not in visited: heapq.heappush(edges, (w, v, next_node)) return mst def kruskal_mst(edges, num_vertices): parent = {i: i for i in range(num_vertices)} rank = dict.fromkeys(range(num_vertices), 0) result = [] def find(node): if parent[node] != node: parent[node] = find(parent[node]) return parent[node] def union(x, y): rootX = find(x) rootY = find(y) if rootX != rootY: if rank[rootX] > rank[rootY]: parent[rootY] = rootX elif rank[rootX] < rank[rootY]: parent[rootX] = rootY else: parent[rootY] = rootX rank[rootX] += 1 sorted_edges = sorted(edges, key=lambda item:item[2]) for edge in sorted_edges: u, v, weight = edge if find(u) != find(v): result.append(edge) union(u,v) return result ```
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值