AI论文AIGC痕迹太重?10款降低ai率的智能工具一键解决

当今的数字化时代,AI在各个领域的应用越来越广泛,尤其是在文本生成领域,因此,如何确保自己的创作能够通过AI检测也成为AI使用过程中的一个重要问题。

不过不用担心,我特别整理了10款实用的工具网站,它们可以帮助优化文本,降低AI检测率,提升内容的原创性和独特性。不管是学生还是内容创作者,这些工具都能助你一臂之力!

1、Scholingo降AI

地址: https://www.scholingo.cn/?source=csdn

Scholingo不仅一键生成论文功能目前也推出了【降AI】的功能,能强力降低论文AIGC痕迹,能通过知网万方格子达权威检测网站只需要上传论文/文字材料,就可以即刻降低AIGC写作痕迹。

使用过Scholingo强力降AIGC的都知道它有多厉害,大家可以看下使用前后知网AIGC检测结果对比,效果真的杠杠的!

 

2.火龙果写作

火龙果写作的【移除AI痕迹】是专门设计用来降低AI生成内容中AI痕迹。通过改变文章的用词和整体风格,从而减少AI生成内容的可识别度,提高文章的原创性,可以确保内容能够通过各类查重系统的检测,达到安全标准。

3.小微智能写作

通过专业的大模型生成,围绕标题产生的内容可以保证语句通顺、上下文衔接自然、逻辑连贯等。支持论文检测报告/论文原文上传,论文检测报告平台包括知网、PaperPass、paperyy等,降AI率高达55%。

4.PaperPass

Paperpass降AIGC系统,基于集成判别器和PPL的综合AIGC文本识别算法,准确度和误判率均处于业界优秀水平。支持上传的AIGC检测报告平台包括知网、万方、维普等主流平台,选择相对会广泛很多哦。而且也可以直接在Paperpass网站中检测AIGC,十分方便。

5.Paperyy

上传[AIGC检测报告]或[论文原文],支持检测报告平台包括知网、PaperPass、Paperyy等,上传后系统会对[重复率]+[AI疑似率]进行双降重,获降重后全文必过AIGC检测。

6.茅茅虫论文写作

采用多年AI研究经验打造的MMC-去AI痕迹模型,精准识别并处理论文中的AI生成内容,有效降低AIGC占比。上传文档后,系统会自动标注并优化相关段落,同时保持原文字数。

7.PaperPro

PaperPro不仅可以降低AIGC疑似率,还可以降低重复率。目前是仅支持中文内容哦,另外,相比起前面介绍的网站,PaperPro暂时没有支持AIGC检测报告上传的。

8.查查呗

查查呗同样可以降低AIGC疑似率和文章重复率。这里注意下哦,如果是知网、万方、维普等主流高校定稿系统降重,就不能简单用查查呗的【降低AIGC】功能啦,需要使用【强力降重】。

9.CheckVIP

CheckVIP和查查呗功能很类似,同样是上传文档/复制粘贴文字,即可降低AIGC疑似率。若使用的是主流高校定稿系统降重,也是需要选择checkvip中的【强力降重】功能。

10.PASSGPS

PASSGPS操作简便,只需要上传文件就可轻松降低AIGC疑似率。同时,它还提供了查降一体化功能,让毕业生在降低AIGC和论文重复率时能更加高效。另外,网站每日为毕业生提供一次免费的查重机会哦。

今天介绍了10个工具,相信大家已经收获满满,赶紧去试试吧!别忘了点个赞再走哦!

### AIGC技术在内容降重中的方法与实现 AIGC人工智能生成内容)作为一种新兴的内容生产方式,在内容创作过程中具有广泛的应用潜力,尤其是在内容降重方面。通过利用自然语言处理技术和大规模语言模型的能力,AIGC可以有效降低文本重复,同时保持语义的一致性和流畅度。 #### 方法概述 AIGC技术用于内容降重的主要方法包括但不限于以下几个方面: 1. **同义替换** 利用词向量和语义相似度计算,将原文中的关键词替换成意义相近的词语或短语。这种方法依赖于预训练的语言模型,能够识别上下文中单词的意义并提供合适的替代方案[^2]。例如,“快速排序是一种高效的排序算法”可以通过同义替换转化为“快速排序是一种高性能的排列方法”。 2. **句法重组** 改变句子结构而不改变原意,这是另一种常见的降重策略。具体来说,可以通过调整句子成分的位置、转换主动被动语态等方式完成重构。这种操作通常由深度学习模型支持,尤其是那些经过充分训练以理解和生成人类语言的模型。比如,“他完成了任务”可被改写成“任务已被他完成”。 3. **抽象概括** 对原始材料进行总结提炼,提取核心要点形成新的表述形式。这种方式不仅减少了冗余信息还提升了表达效。虽然这一步骤可能涉及到更多的逻辑推理能力,但对于已经具备一定常识理解力的大规模预训练模型而言并非难事[^5]。 4. **风格迁移** 将源文档从一种写作风格转变为另一种完全不同的风格,如正式转非正式或者反之亦然。此过程同样建立在强大的NLP技术支持之上,确保即使改变了语气也不会丢失原本想要传达的信息[^4]。 #### 实现路径 为了使上述提到的各种降重手段得以实际运用,以下是几个关键技术环节及其对应的解决方案: - **数据准备** 高质量的数据集对于任何机器学习项目都是至关重要的前提条件之一。因此,在实施前需先构建包含多样化样本类型的庞大数据库供后续分析使用。 - **模型选择** 当前主流的选择有基于Transformer架构设计而成的各种大型预训练模型,像GPT系列、BERT等均表现出色。它们各自擅长不同任务类型,开发者应根据具体需求挑选最匹配的那个版本。 - **微调优化** 即便采用最先进的通用型框架也未必能满足特定业务场景下的特殊要求,所以往往还需要进一步针对目标领域内的特点做专门定制化的参数调节工作。例如当专注于科学文献摘要生成时,则要特别关注术语准确性等方面的表现指标。 - **评估反馈机制建设** 创建一套完整的评测体系用来衡量最终产出物的质量水平至关重要。该体系应当涵盖多维度考量因素,诸如语法正确性检验、主题一致性审查以及创新程度评判等等。 --- ```python def paraphrase_text(input_text, model="gpt-4"): """ 使用指定模型对输入文本进行同义替换和句法重组 参数: input_text (str): 待处理的原始字符串 model (str): 所使用的语言模型,默认为"gpt-4" 返回值: str: 经过修改后的全新描述文字 """ import openai prompt = f"Paraphrase the following sentence while preserving its meaning:\n{input_text}" response = openai.Completion.create( engine=model, prompt=prompt, max_tokens=100, n=1, stop=None, temperature=0.8, ) return response.choices[0].text.strip() # 示例调用 original_sentence = "Artificial intelligence is revolutionizing various industries." paraphrased_version = paraphrase_text(original_sentence) print(paraphrased_version) ``` --- ### 结果验证 通过以上步骤开发出来的应用程序不仅可以有效地减少抄袭嫌疑还能提高原创价值含量。更重要的是整个流程自动化程度高,极大地节省了人力成本同时也加快了工作效
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值