论文AIGC率过高怎么办?3款降AIGC工具帮你解决

如今,知网维普、万方都上线了论文AIGC率检测,论文的AIGC率成为评判论文的重要指标,这让用ai辅助写论文的小伙伴们忧心忡忡。不过别担心!俗话说,“三步之内必有解药”,你有没有想过,AI带来的问题,其实可以用AI自己来解决!一些AI写作工具已经推出了【降AIGC痕迹】的功能,真实还原人类写作风格,一键去除论文中的查AIGC标红段落和AIGC疑似标红段落,AIGC检测轻轻松松通过!以下便给大家分享3款可以降AIGC痕迹的AI工具:

一、Scholingo降AI

地址: https://www.scholingo.cn/?source=csdn

Scholingo不仅一键生成论文功能目前也推出了【降AI】的功能,能强力降低论文AIGC痕迹,能通过知网万方格子达权威检测网站

上传或粘贴上文本,等待2分钟,就可得到强力降低了AIGC痕迹的文章啦,AI率保证在安全线内。另外值得一提的是,scholingo不会泄漏任何论文信息,大家可以放心使用。

 

二、PaperFake AI

网址:https://paperfake.cn/

笔灵AI的降AI痕迹上线之后,PaperFake也上线了类似的功能。看这页面咱也不好说它是有借鉴多少哈,不过试了一下输出的结果和笔灵是不同的。所以大家也可以都试试看看哪个更满足自己的需求。

三、AIQuora

网址:https://www.aiquora.com/

AIQuora基于第四代nlp的超拟人文本改写系统,真实还原人类写作风格,一键去除论文中的查AIGC标红段落和AIGC疑似标红段落。AIQuora的降AIGC率功能分为手动和自动两种方式。手动方式指用户要自己选取文章中想要降AI率的部分,粘贴到文本框内,让AI生成降低后结果;自动方式则是直接上传论文全文,让系统自行判断AI痕迹并进行降低。用户还可以选择降AIGC的等级(普通/中等/强力),等级越强,降低程度越高,文章变动越大。需要注意的是,AIQuora目前仅支持对中文论文的处理哦。

用了这些工具,AIGC检测率刷刷就下来了,根本不用担心!不过,AI工具虽然能帮忙解决语言表达方面的问题,若想要论文真正得到认可,还是要在论文中加入自己独特的想法和思考的哦。祝大家论文写作顺利!

### 如何减少论文AIGC的相关内容 如果希望论文中关于AIGC的内容比例,可以通过调整研究重点、重新分配篇幅或者聚焦其他相关主题来实现。以下是具体的策略: #### 1. 调整研究范围 可以缩小或改变研究的重点方向,使AIGC不再作为核心议题。例如,在网络安全领域,虽然AIGC可能被用于漏洞检测和程序修复[^2],但如果目标是减少对其依赖,则可以选择更传统的技术手段进行阐述,比如基于规则的静态分析工具或手动测试流程。 #### 2. 增加非AIGC部分的比例 通过扩展其他章节的内容比重,间接削弱AIGC所占的位置。假如原计划详细介绍AIGC的技术架构及其应用场景[^1],现在则可增加更多背景资料或其他关联学科的知识补充,从而平衡整体结构。 #### 3. 替代方案说明 对于原本打算采用AIGC解决的问题,考虑列举并评价几种替代方法。这不仅能够展现批判性思维能力[^3],还有效减少了直接涉及AI生成内容的部分。例如,在视觉语言任务处理方面,尽管CLIP模型表现优异[^4],但仍需探讨传统计算机视觉算法在特定场景下的适用性和优势。 ```python def reduce_aigc_content(paper_sections, target_percentage=0.3): """ 函数功能:根据给定的目标百分比缩减论文中的AIGC相关内容 参数: paper_sections (dict): 论文中各部分内容占比字典形式表示 {"section_name": percentage} target_percentage (float): 需要保留的最大AIGC内容比例,默认值为0.3 返回值: dict: 修改后的论文各部分内容分布情况 """ total = sum(paper_sections.values()) aigc_current = paper_sections.get('AIGC', 0) if aigc_current / total > target_percentage: reduction_needed = ((aigc_current / total) - target_percentage)*total new_aigc_value = max(0, aigc_current - reduction_needed) # 将节省出来的空间均匀分配到其余部分 non_aigc_keys = set(paper_sections.keys()) - {'AIGC'} adjustment_per_section = reduction_needed / len(non_aigc_keys) updated_paper_sections = {k:(v+adjustment_per_section if k != 'AIGC' else new_aigc_value )for k,v in paper_sections.items()} return updated_paper_sections else: return paper_sections ``` 上述代码片段展示了一个简单的逻辑框架,用来计算如何合理地削减AIGC成分的同时保持文档内部一致性。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值