减少论文AIGC率:必看的10款高效降AIGC工具

当今的数字化时代,AI在各个领域的应用越来越广泛,尤其是在文本生成领域,因此,如何确保自己的创作能够通过AI检测也成为AI使用过程中的一个重要问题。

不过不用担心,我特别整理了10款实用的工具网站,它们可以帮助优化文本,降低AI检测率,提升内容的原创性和独特性。不管是学生还是内容创作者,这些工具都能助你一臂之力!

1、Scholingo降AI

地址: https://scholingo.cn/ai-writer/detector?source=csdn

Scholingo不仅一键生成论文功能目前也推出了【降AI】的功能,能强力降低论文AIGC痕迹,能通过知网万方格子达权威检测网站只需要上传论文/文字材料,就可以即刻降低AIGC写作痕迹。

使用过Scholingo强力降AIGC的都知道它有多厉害,大家可以看下使用前后知网AIGC检测结果对比,效果真的杠杠的!

 

2.火龙果写作

火龙果写作的【移除AI痕迹】是专门设计用来降低AI生成内容中AI痕迹。通过改变文章的用词和整体风格,从而减少AI生成内容的可识别度,提高文章的原创性,可以确保内容能够通过各类查重系统的检测,达到安全标准。

3.小微智能写作

通过专业的大模型生成,围绕标题产生的内容可以保证语句通顺、上下文衔接自然、逻辑连贯等。支持论文检测报告/论文原文上传,论文检测报告平台包括知网、PaperPass、paperyy等,降AI率高达55%。

4.PaperPass

Paperpass降AIGC系统,基于集成判别器和PPL的综合AIGC文本识别算法,准确度和误判率均处于业界优秀水平。支持上传的AIGC检测报告平台包括知网、万方、维普等主流平台,选择相对会广泛很多哦。而且也可以直接在Paperpass网站中检测AIGC,十分方便。

5.Paperyy

上传[AIGC检测报告]或[论文原文],支持检测报告平台包括知网、PaperPass、Paperyy等,上传后系统会对[重复率]+[AI疑似率]进行双降重,获降重后全文必过AIGC检测。

6.茅茅虫论文写作

采用多年AI研究经验打造的MMC-去AI痕迹模型,精准识别并处理论文中的AI生成内容,有效降低AIGC占比。上传文档后,系统会自动标注并优化相关段落,同时保持原文字数。

7.PaperPro

PaperPro不仅可以降低AIGC疑似率,还可以降低重复率。目前是仅支持中文内容哦,另外,相比起前面介绍的网站,PaperPro暂时没有支持AIGC检测报告上传的。

8.查查呗

查查呗同样可以降低AIGC疑似率和文章重复率。这里注意下哦,如果是知网、万方、维普等主流高校定稿系统降重,就不能简单用查查呗的【降低AIGC】功能啦,需要使用【强力降重】。

9.CheckVIP

CheckVIP和查查呗功能很类似,同样是上传文档/复制粘贴文字,即可降低AIGC疑似率。若使用的是主流高校定稿系统降重,也是需要选择checkvip中的【强力降重】功能。

10.PASSGPS

PASSGPS操作简便,只需要上传文件就可轻松降低AIGC疑似率。同时,它还提供了查降一体化功能,让毕业生在降低AIGC和论文重复率时能更加高效。另外,网站每日为毕业生提供一次免费的查重机会哦。

今天介绍了10个工具,相信大家已经收获满满,赶紧去试试吧!别忘了点个赞再走哦!

### 如何优化 AIGC 的成本与性能 #### 1. 提升模型推理效 为了AIGC 的运行成本并提升其性能,可以采用更高效的模型架构或量化技术。例如,通过剪枝、蒸馏等方式压缩大模型规模,在保持较高精度的同时显著减少计算量和内存占用[^2]。 #### 2. 使用按需计费模式 基于云计算环境下的弹性扩展特性,可以选择按照实际需求动态调整资源配置的方式运作 AIGC 应用程序。具体而言,当负载较低时缩减实例数量或者切换至更低规格配置;而在高峰期则增加资源供给以满足业务增长的需求。这种方法能够有效避免固定容量部署带来的闲置浪费现象[^4]。 #### 3. 利用预留实例低成本 对于长期稳定运行的服务场景来说,购买一定期限内的专用虚拟机(即所谓的"保留实例")往往比持续使用现货市场价格波动更大的临时机器更加经济实惠 。此外还可以考虑混合搭配这两种形式 ,既保障基础服务能力又兼顾突发流量应对能力 . #### 4. 数据处理流程改进 针对输入端的数据预处理阶段实施针对性改造措施也是不可或缺的一环 .比如提前剔除无关特征项从而简化后续运算逻辑 ; 或者合理规划缓存机制以便重复查询情况下快速返回结果而无需每次都重新执行耗时操作等等 [^1]. #### 5. 网络传输层面提速 除了上述几个方面之外 ,还需要重视起网络连接质量这一重要因素的影响作用 —— 特别是在跨地域分布式协作开发环境下尤为明显 。因此建议尽可能缩短源服务器距离最终访问者的物理位置差距 (如CDN加速节点布置 ) 同时也要注意协议版本升级换代所带来的潜在增益效果 . ```python import boto3 def get_cost_explorer_data(): client = boto3.client('ce', region_name='us-east-1') response = client.get_cost_and_usage( TimePeriod={ 'Start': '2023-09-01', 'End': '2023-10-01' }, Granularity='MONTHLY', Metrics=['BlendedCost'], GroupBy=[ { 'Type': 'DIMENSION', 'Key': 'SERVICE' } ] ) return response['ResultsByTime'] ``` 以上代码片段展示了如何利用 AWS Cost Explorer API 获取指定时间段内各服务组件产生的费用明细记录,便于进一步深入挖掘隐藏其中可改善之处的信息线索。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值