文献阅读17期:Deep Learning on Graphs: A Survey - 6

[ 文献阅读·综述 ] Deep Learning on Graphs: A Survey [1]

推荐理由:图神经网络的survey paper,在很多的领域展现出了独特的作用力,分别通过GRAPH RNN(图循环网络)、GCN(图卷积)、GRAPH AUTOENCODERS(图自编码器)、GRAPH REINFORCEMENT LEARNING(图强化学习模型)、GRAPH ADVERSARIAL METHODS(图对抗模型)等五个类型的模型进行阐述,可以让大家对图神经网络有一个整体的认识。

6.图强化学习

在这里插入图片描述

  • 深度学习的一个尚未讨论的方面是强化学习(RL),它已被证明在人工智能任务(如玩游戏)中有效。RL擅长从反馈中学习,特别是在处理不可微目标和约束时。在本节中,我们将回顾图RL方法。表6总结了它们的主要特点。
  • GCPN利用RL生成目标导向的分子图,同时考虑非微分目标和约束条件。具体地说,图生成被建模为一个添加节点和边的Markov决策过程,生成模型被看作是一个在图生成环境中运行的RL代理。通过将代理操作视为链接预测,使用特定域和对抗性奖励,并使用GCN学习节点表示,GCPN可以使用策略梯度以端到端的方式进行训练。
  • 一个并行的工作,MolGAN,采用了类似的想法,使用RL生成分子图。然而,与其通过一系列动作生成图形,其建议直接生成完整的图形;这种方法对小分子特别有效。
  • GTPN采用RL预测化学反应产物。具体来说,该代理在分子图中选择节点对并预测其新的键合类型,并根据预测是否正确立即和最后给予奖励。GTPN使用GCN学习节点表示,使用RNN记忆预测序列。
  • GAM利用随机游动将RL应用于图形分类。作者将随机游动的产生建模为部分可观测马尔可夫决策过程(POMDP)。代理执行两个操作:首先,它预测图的标签;然后,它在随机游走中选择下一个节点。奖励仅取决于代理是否正确地对图进行分类,即:
    J ( θ ) = E P ( S 1 : T ; θ ) ∑ t = 1 T r t (60) \mathcal{J}(\theta)=\mathbb{E}_{P\left(S_{1: T} ; \theta\right)} \sum_{t=1}^{T} r_{t}\tag{60} J(θ)=EP(S1:T;θ)t=1Trt(60)
  • DeepPath和MINERVA都采用RL进行知识图推理。具体来说,DeepPath的目标是寻路,即在两个目标节点之间找到信息量最大的路径,而MINERVA则负责问答任务,即在给定问题节点和关系的情况下找到正确的答案节点。在这两种方法中,RL代理需要在每一步预测路径中的下一个节点,并以KG为单位输出推理路径。如果路径到达正确的目的地,代理将获得奖励。DeepPath还添加了一个正则化项来鼓励路径多样性。

7.图对抗方法

在这里插入图片描述

  • 近年来,在机器学习领域,诸如GANs和敌对攻击等对抗性方法越来越受到人们的关注。在本节中,我们将回顾如何将对抗性方法应用于图。表7总结了图形对抗方法的主要特点。

7.1.对抗训练

  • GAN背后的基本思想是建立两个链接模型:鉴别器和生成器。生成器的目标是通过生成假数据来“欺骗”鉴别器,而鉴别器的目标是区分样本是来自真实数据还是由生成器生成的。随后,两个模型通过使用minimax博弈进行联合训练,从中受益。对抗训练在生成模型和提高判别模型的泛化能力方面都是有效的。在第5.3.1节和第6节中,我们分别回顾了如何在GAEs和图RL中使用对抗性训练方案。在这里,我们详细回顾了其他几种图形对抗训练方法。
  • GraphGAN建议使用GAN来增强具有以下目标函数的图嵌入方法:
    min ⁡ G max ⁡ D ∑ i = 1 N ( E v ∼ p graph  ( ⋅ ∣ v i ) [ log ⁡ D ( v , v i ) ] + E v ∼ G ( ⋅ ∣ v i ) [ log ⁡ ( 1 − D ( v , v i ) ) ]
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值