HDU 5117 Fluorescent |--状压DP 同时被 2 个专栏收录 1 篇文章 0 订阅

X^3=（x1+x2+x3...xn)*（x1+x2+x3...xn)*（x1+x2+x3...xn) = sigma(Xi * Xj * Xk)

E[X^3] * 2^M = X^3 = sigma(Xi * Xj * Xk)

DP[t][s] = 前 t 个按钮， 使得Xi, Xj, Xk状态为 s 的方法数。

ans = sigma(DP[M])

Fluorescent

Time Limit: 3000/3000 MS (Java/Others)    Memory Limit: 512000/512000 K (Java/Others)
Total Submission(s): 108    Accepted Submission(s): 49

Problem Description
Matt, a famous adventurer who once defeated a pack of dire wolves alone, found a lost court. Matt finds that there are N fluorescent lights which seem to be the stars from the firmament. What’s more, there are M switches that control these fluorescent lights. Each switch is connected to a group of lights. When Matt touches a switch, all the lights connected to it will change their states (turning the dark on, turning the bright off).

Initially, all the fluorescent lights are dark. For each switch, Matt will touch it with probability 1 .

As a curious gentleman, Matt wants to calculate E[X3], where X represents the number of bright lights at the end, E[X3] represents the expectation of cube of X.

Input
The first line contains only one integer T , which indicates the number of test cases.

For each test case, the first line contains N, M (1 ≤ N, M ≤ 50), denoting the number of fluorescent lights (numbered from 1 to N ) and the number of switches (numbered from 1 to M ).

M lines follow. The i-th line begins with an integer Ki (1 ≤ K i ≤ N ). K i distinct integers l ij(1 ≤ l ij ≤ N ) follow, denoting the fluorescent lights that the i-th switch controls.

Output
For each test case, output a single line “Case #x: y”, where x is the case number (starting from 1) and y is the answer. To avoid rounding error, the answer you should output is:

E[X3] × 2M mod (109 + 7)

Sample Input

2 2 2 1 1 2 1 2 3 1 3 1 2 3

Sample Output

Case #1: 10 Case #2: 27
Hint
For the first sample, there’re 4 possible situations: All the switches is off, no light is bright, X^3 = 0. Only the first switch is on, the first light is bright, X^3 = 1. Only the second switch is on, all the lights are bright, X^3 = 8. All the switches is on, the second lights are bright, X^3 = 1. Therefore, the answer is E[X^3] × 2^2 mod (10^9 + 7) = 10. For the second sample, there’re 2 possible situations: The switches is off, no light is bright, X^3 = 0. The switches is on, all the lights are bright, X^3 = 27. Therefore, the answer is E[X^3] × 2^1 mod (10^9 + 7) = 27.

Source

#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
#define prt(k) cout<<#k" = "<<k<<endl;
typedef long long ll;
#include <algorithm>

const ll mod = 1e9 + 7;
const int N = 52;
ll S[N];
int DP[N];
int n,m ;
int i, j, k;
int g( ll s)
{
int ret = 0;
if (s >> i & 1) ret ^= 1;
if (s >> j & 1) ret ^= 2;
if (s >> k & 1) ret ^= 4;
return ret;
}
void add(int &a, int b) { a=(a+b)%mod; }
int main()
{
int re; int ca=1;
cin>>re;
while (re--)
{
cin>>n>>m;
for (int i=0;i<m;i++)
{
ll t = 0;
int k; cin>>k;
while (k--)
{
int x ;scanf("%d", &x);
x--;
t |= (1ll<<x);
}
S[i] = t;
}
int ans = 0;
for (i=0;i<n;i++)
{
for (j=0;j<n;j++)
{
for (k=0;k<n;k++)
{
memset(DP, 0, sizeof DP);
DP = 1;
for (int t=0;t<m;t++)
{
int s = g(S[t]);
for (int x=0;x<8;x++)
{
}
}
}
}
}
printf("Case #%d: %d\n", ca++, ans);
}
return 0;
}

09-21 385
09-26 314

09-10 185
09-25 688
01-18 545
10-03 3421
10-09 174
05-21 223
06-26 988
09-08 317
04-02 911
11-14 139
12-01 1035
10-23 383
09-30 125
10-06 294
07-14 39
09-27 108
04-23 1368
05-07 779 oilover

¥2 ¥4 ¥6 ¥10 ¥20  余额支付 (余额：-- )  扫码支付 获取中  扫码支付 点击重新获取   扫码支付 1.余额是钱包充值的虚拟货币，按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载，可以购买VIP、C币套餐、付费专栏及课程。 余额充值