SHU A序列 (最大上升子序列)

本文介绍了一种算法,用于解决寻找给定数组中最长的A序列子串的问题。A序列定义为奇数个正整数组成的序列,左侧严格递增而右侧严格递减。文章通过构建两个辅助数组来记录每个元素在递增与递减序列中的位置,最终求得最长A序列的长度。
摘要由CSDN通过智能技术生成

A序列

描述
如果一个序列有奇数个正整数组成,不妨令此序列为a1,a2,a3,…,a2∗k+1(0<=k),并且a1,a2…ak+1是一个严格递增的序列,ak+1,ak+2,…,a2∗k+1,是一个严格递减的序列,则称此序列是A序列。

比如1 2 5 4 3就是一个A序列。

现在Jazz有一个长度为n的数组,他希望让你求出这个数组所有满足A序列定义的子序列里面最大的那个长度。(子序列可以不连续)

比如1 2 5 4 3 6 7 8 9,最长的A序列子串是1 2 5 4 3。

输入
多组输入,每组两行。
第一行是n,表示给的数组的长度。
第二行有n个数(int范围),即给你的数组。
1<=n<=500000。

输出
每组输入输出一行,即最长的A序列子串的长度。

样例输入1 复制
9
1 2 5 4 3 6 7 8 9
样例输出1
5

根据题目要求,在某个数的左边是严格递增,右边是严格递减,所以求出每个数在单调递增/递减序列中的下标,再求出复合题目要求的值,这个值是单调递增和递减所满足的最大值

以题目为例(标示下标) 1 2 5 4 3 6 7 8 9
递增 ( 从左到右递增 ) 1 2 3 3 3 4 5 6 7
递减 ( 从右到左递增 ) 1 1 3 2 1 1 1 1 1

l[i]:代表到达第i个值时的最长子序列是多大
k:表示符合条件的最大子序列的对称点

#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <iostream>
#include <map>
#include <stack>
#include <cmath>
#include <vector>
using namespace std;
typedef long long ll;
const int N=5e5+7;
int a[N],b[N];
int l[N],r[N];
int main()
{
    int n;
    while(~scanf("%d",&n))
    {
        for(int i=0;i<n;i++)
        {
            scanf("%d",&a[i]);
            r[n-1-i]=a[i];//将数组逆向存储,便于找单调递减
        }
        int le=0;
        b[0]=a[0];
        l[0]=le+1;
        for(int i=1;i<n;i++)
        {
            if(a[i]>b[le])
            {
                b[++le]=a[i];
                l[i]=le+1;
            }
            else
            {
                int k=(int)(lower_bound(b,b+le,a[i])-b);//找出大于小于此数的第一个数,并且取代它
                b[k]=a[i];
                l[i]=k+1;
            }
        }
        int pos=min(1,l[n-1]);
        le=0;
        b[0]=r[0];
        for(int i=1;i<n;i++)
        {
            if(r[i]>b[le])
            {
                b[++le]=r[i];
                pos=max(pos,min(le+1,l[n-1-i]));
            }
            else
            {
                int k=(int)(lower_bound(b,b+le,r[i])-b);
                b[k]=r[i];
                pos=max(pos,min(k+1,l[n-1-i]));
            }
        }
        printf("%d\n",2*pos-1);
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值