AtCoder Beginner Contest 336 D题 Pyramid

D题:Pyramid

标签:动态规划、前缀和
题意:金字塔型序列: 1 、 2... k − 1 、 k 、 k − 1...2 、 1 1、2...k-1、k、k-1...2、1 12...k1kk1...21。给定一个长度为 n n n的序列 a i a_i ai,可以进行重复性的两种操作:

  1. 将序列中某个数的大小减一
  2. 删除第一个或最后一个数

求能够形成的金字塔型序列的最大长度。( 1 < = n < = 2 ∗ 1 0 5 , 1 < = a i < = 1 0 9 1<=n<=2*10^{5},1<=a_i<=10^9 1<=n<=21051<=ai<=109
题解:比较常见的套路,洛谷也有类似的题:P1091 合唱队形
从左往右维护一个 p r e [ i ] pre[i] pre[i]:以 a i a_i ai作为结尾的最长左金字塔序列的长度
从右往左维护一个 s u f [ i ] suf[i] suf[i]:以 a i a_i ai作为结尾的最长右金字塔序列的长度
我们以 p r e [ i ] pre[i] pre[i]为例,分别来观察一下
例子 1 1 1 1 、 2 、 3 1、2、3 123
例子 2 2 2 1 、 2 、 2 1、2、2 122
例子 3 3 3 3 、 1 、 2 3、1、2 312
按照题目中能把数变小和删除前后数字的操作,能推出当前的 p r e [ i ] pre[i] pre[i]要从前面的 p r e [ i − 1 ] pre[i-1] pre[i1]和当前 a i a_i ai较小的那个推过来:
p r e [ i ] = m i n ( p r e [ i − 1 ] + 1 , a [ i ] ) pre[i] = min(pre[i - 1] + 1, a[i]) pre[i]=min(pre[i1]+1,a[i])
s u f suf suf同理,最终枚举每个数作为金字塔尖,左边金字塔序列长度和右边金子塔序列长度中取小的那个能够形成的金字塔序列长度,然后维护一个最大值。
代码

#include <bits/stdc++.h>
using namespace std;

const int N = 2e5 + 10;
typedef long long ll;
ll a[N], pre[N], suf[N];

int main() {
    ll n, ans = 0;
    cin >> n;
    for (int i = 1; i <= n; i++) {
        cin >> a[i];
        pre[i] = min(pre[i - 1] + 1, a[i]);
    }
    for (int i = n; i >= 1; i--) {
        suf[i] = min(suf[i + 1] + 1, a[i]);
    }
    for (int i = 1; i <= n; i++) {
        ans = max(ans, min(pre[i], suf[i]));
    }
    cout << ans;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值