一、接口是什么
在讨论为什么要做接口测试之前,我们可以先稍微了解一下接口是什么?
接口可以很不准确的理解成是与资源打交道,这个资源可能是本系统的,也可能是其他系统的。
举个例子,假如我们在开发1个bug管理系统,该系统需要拿到公司的所有开发和测试人员的信息,这样开发和测试人员不用注册都可以登录进去了,这应该很好理解。
那么这些人员的信息储存在哪里呢?一般存储在hr系统里。现在的需求更加明确了,我们要到hr系统中去拿到人员信息,获取hr系统中的人员资源。
怎么拿呢?很多种方式,可以直接把hr系统的数据库拷贝一份放到bug管理系统里,不过这样不好,因为数据的同步会有点麻烦;还可以直接连hr系统的数据库去查,这样也不太好,这样我们就需要了解hr系统的数据存储结构和逻辑,一旦hr系统的数据字段发生改变,bug管理系统也要去该,以便同步。
比较好的做法是,hr系统暴露一些接口,通过这些接口去获取人员信息资源,这样bug系统就不需要关心hr系统的数据存储实现了。
- 这些接口可能是这样的:登录的接口,提供人员的用户名和密码,去hr系统中判断该人员是否存在,如果存在验证用户名和密码,如果验证通过就返回1个token,该token就是这个人员的通行证,通过token可以登录到bug管理系统中去;
- 获取人员信息的接口,返回该人员的职位:测试还是开发,以及用户名,昵称等信息;
综上:接口可以理解成是不同系统或模块之间资源交流方式;
二、接口测试实际上是黑盒测试
作为黑盒测试,基本的测试思路是通过输入和输出判断被测系统或者对象的逻辑。
获取人员的信息,我需要把人员的用户名传给hr系统接口,这样hr系统的接口会返回给我用户的一些更加具体的信息。这里的输入是用户名,输出是用户的详细信息。
三、为什么要做接口测试
既然是接口获取和操作资源的方式,而大部分系统和产品中,资源一般都是产品的核心,比如微信核心资源就是通讯录关系链和聊天记录等,因此资源是必测的。
另外接口中大部分的内容是数据,通过数据的对比我们能推测到系统和产品的逻辑,测接口就是测逻辑。
最后接口中的返回相对单纯,不像web页面,html代码中有太多ui的东西,ui最不稳定,变化太快,接口相对稳定一点点,但是里面的干扰信息更少,断言相对容易很多。
四、接口测试用例怎么写
还是3a原则,这个我以前的回答里有。
- A: arrange 初始化测试数据,就是造数据,这里的数据有我们输入的数据,也有目标接口所涉及的资源,比如hr系统中的用户信息,我们必须先有几条人员的详细信息才能去测获取人员信息的接口(当然只是正常的流程,我们有时候还需要清掉数据以便测试资源为空的情况);
- A: act 调用接口,传入输入数据;
- A: assert 断言, 对返回的资源信息进行断言,比如获取用户信息的接口返回了用户信息之后,我们要判断返回的用户是不是我们想要的那个用户,我们获取的是李雷的信息,接口如果返回韩梅梅,那么接口的逻辑就是不对的;
五、有哪些常见的接口
-
携程订飞机票,飞机票的信息一般都是通过各大航空公司的接口拿到的;
-
淘宝的物流信息,一般淘宝的物流信息都是通过各个物流公司的接口拿到的;
-
第三方微博客户端,个人用户的微博等信息都是通过微博的接口拿到的;
六、常见的接口测试工具
- postman: 推荐。基本功能免费。最简单的基于http接口的调试和测试工具;
- jmeter:后置处理器配合断言基本上可以满足接口测试需求,就是测试报告要做二次开发
- 自己撸代码:推荐。配合类似xunit测试框架,基本可以满足一切需求;
- soapui: 收费的;
- insomnia:强力推荐。postman的弱化版,基本功能免费,重要的是工具代码开源,可以自己改;
- paw: 强力推荐。mac上最强,淘宝买个授权好像就百把块钱;
七、mock
1.mock是什么
两个系统联调,A完成B开发中,无需B开发完,也可以测试A系统,mock数据便是模拟B系统的接口,快速联调
准确的说:mock是python中一个用于支持单元测试的库,主要功能时使用mock对象代替指定的python对象,已达到模拟对象的行为
不需要关心如何实现的过程,只关注结果即可
2.mock环境搭建
python3.x中,集成到unittest中,直接导入
from unittest import mock
3.mock的优点
1.并行工作:无需等待两者都开发完,一方开发好即可测试
2.模拟无法访问的资源
3.系统具有隔离性:构造虚拟的post请求,不污染数据库中的数据
4.提高覆盖率:模拟500,400,301等不同的类型
4.mock的构成
5.mock中的方法
from unittest.mock import Mock
mock_obj = Mock() # 实例化Mock对象
print(dir(mock_obj))
# ['assert_any_call', 'assert_called', 'assert_called_once', 'assert_called_once_with', 'assert_called_with', 'assert_has_calls', 'assert_not_called', 'attach_mock', 'call_args', 'call_args_list', 'call_count', 'called', 'configure_mock', 'method_calls', 'mock_add_spec', 'mock_calls', 'reset_mock', 'return_value', 'side_effect']
6.Mock中的构造方法
from unittest.mock import Mock
print(dir(Mock))
# ['_NonCallableMock__get_return_value', '_NonCallableMock__get_side_effect', '_NonCallableMock__return_value_doc', '_NonCallableMock__set_return_value', '_NonCallableMock__set_side_effect', '__call__', '__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattr__', '__getattribute__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', '_call_matcher', '_extract_mock_name', '_format_mock_call_signature', '_format_mock_failure_message', '_get_child_mock', '_mock_add_spec', '_mock_call', '_mock_check_sig', '_mock_return_value', '_mock_side_effect', 'assert_any_call', 'assert_called', 'assert_called_once', 'assert_called_once_with', 'assert_called_with', 'assert_has_calls', 'assert_not_called', 'attach_mock', 'call_args', 'call_args_list', 'call_count', 'called', 'configure_mock', 'mock_add_spec', 'mock_calls', 'reset_mock', 'return_value', 'side_effect']
1.name
name:mock对象的标识
from unittest import mock
mock_obj = Mock(name = 'xxx')
print(f'name标识{mock_obj}')
# name标识<Mock name='xxx' id='4445533296'>
2.return_value(用的最多)
return_value:该参数指定一个值或者对象
from unittest import mock
mock_obj1 = mock.Mock(return_value=100)
print(f'return_value 指定值{mock_obj1()}')
# return_value 指定值100
3.side_effect
side_effect:该参数指向一个可调用对象(一般是函数)
当mock对象被调用时,如果该参数的返回值是默认的DEFAULT,则mock对象返回return_value指定的值;
否则返回side_effect指定的对象的返回值
from unittest import mock
mock_obj2 = mock.Mock(return_value=100, side_effect=None)
print(f'side_effect 默认值为None,输出return_values的值{mock_obj2()}')
# side_effect 默认值为None,输出return_values的值100
mock_obj3 = mock.Mock(return_value=100, side_effect=[200, 300])
print(f'side_effect 指定值{mock_obj3()},return_value的值被覆盖')
# side_effect 指定值200,return_value被覆盖
print(f'side_effect 迭代输出指定值{mock_obj3()}')
# side_effect 迭代输出指定值300
7.mock 断言
1.assert_called_with()
assert_called_with(参数arg):检查函数调用参数是否正确
from unittest.mock import Mock
class Foo(object):
value = 20
def f1(self, arg):
return arg
mock_obj = Mock(spec=Foo)
# f1正确的传参姿势
mock_obj.f1(222)
# mock_obj.f1.assert_called_with()
# 报错,没有传参
# mock_obj.f1.assert_called_with(11)
# 报错,应该传222,传了11
# mock_obj.f1.assert_called_with(222)
# 不报错
2.assert_called_once_with()
assert_called_once_with(参数arg):检查函数调用参数是否正确,但是只调用一次
from unittest.mock import Mock
mock = Mock()
mock()
mock.assert_called_once_with()
# 不会报错
mock()
mock.assert_called_once_with()
# AssertionError: Expected 'mock' to be called once. Called 2 times.
感谢每一个认真阅读我文章的人,礼尚往来总是要有的,虽然不是什么很值钱的东西,如果你用得到的话可以直接拿走:
这些资料,对于【软件测试】的朋友来说应该是最全面最完整的备战仓库,这个仓库也陪伴上万个测试工程师们走过最艰难的路程,希望也能帮助到你!有需要的小伙伴可以点击下方小卡片领取