Deep Learning-Based Multiclass Instance Segmentation for Dental Lesion Detection

Abstract

为此,我们提出了一种用于根尖周疾病检测的轻量级Mask-RCNN模型。该模型分为两部分构建:轻量级的改进MobileNet-v2骨干网和基于区域的网络(RPN),用于小数据集的根尖周疾病定位。为了测量所提出模型的有效性,轻量级的Mask-RCNN在包含五种不同类型根尖周围病变图像的自定义注释数据集上进行评估。结果表明,该模型可以检测和定位根尖周围病变,总体精度为94%,平均平均精度为85%,平均感染率为71.0%。

网络架构图

methods

所提出的根尖周疾病检测、分类和定位方法涉及几个关键步骤:

  1. 图像预处理:对收集的带注释图像进行预处理,以消除噪声、增强对比度和提高分辨率。此步骤对于确保图像适合分析至关重要。
  2. 特征提取:然后将预处理后的图像输入到专为特征提取而设计的轻量级主干网络中。该网络从图像中捕获与识别牙齿病变相关的重要特征。
  3. 区域提议网络 (RPN):提取的特征图被转发到 RPN,后者生成区域提议。这些提议指示图像中可能存在病变的潜在区域。
  4. 感兴趣区域 (ROI) 对齐:区域提议与 ROI 对齐块中的特征图一起处理。该块通过将提议的区域与相应的特征对齐来准备分类数据。
  5. 分类和可视化:该模型使用完全连接的层对输入图像进行分类,并在识别的区域周围显示边界框,从而可以可视化检测到的病变。

本研究使用的数据集包括 534 张根尖周图像,其中 516 张由经验丰富的放射科医生和牙医标记。该方法旨在通过先进的深度学习技术提高牙齿病变检测的准确性和效率 [T5]。

results

  1. 总体准确度:所提出的模型在检测根尖周病变方面实现了 94% 的总体准确度。
  2. 平均精度 (mAP):该模型的平均精度为 85%,表明其能够正确识别和分类不同类别的病变。
  3. 平均交并比 (IoU):平均 IoU 为 71.0%,这反映了该模型在准确定位图像中检测到的病变方面的表现。
  4. 性能比较:所提出的轻量级 Mask-RCNN 优于现有的最先进方法,即使在较小的数据集中也表现出更好的检测、分类和定位精度。
  5. 消融研究:额外的实验强调,Mask-RCNN 中使用的经过修改的 MobileNet-v2 主干网络与 ResNet-50 和 ResNet-101 等其他主干网络相比提供了更好的性能指标,在疾病检测和分类方面实现了 0.86 的精度、0.89 的召回率和 0.805 的 ROC AUC。

conclusion

本研究提出了一种基于深度学习的检测与定位网络,用于根尖周放射图像中不同牙周病变的分类与定位。在特征图提取方面,利用轻量级的改进的MobileNet-v2,通过增加一个全局平均池化层和一个dropout层来增强Mask-RCNN模型的性能,然后使用区域建议网络来识别区域建议。该机制通过获得锚盒提供多疾病预测。此外,还对超参数进行了微调,以进一步提高模型的性能并获得准确的预测。所提出的系统检测根尖周围病变是难以识别的其他现有的方法,由于放射图像的复杂性。利用CLAHE对图像进行预处理,增强图像对比度,降低噪声,获得更好的性能。该模型在一个带有标注疾病标签的定制数据集上进行了测试。使用提供的注释生成掩码,然后使用这些注释来训练模型。结果表明,所提出的模型能够增强根尖周疾病的识别和定位,其精度优于其他现有的放射图像牙病定位方案。

所提出的方法有一定的局限性,需要进一步研究以提高其性能。用于训练所提出模型的数据集在大小方面很小。在这项工作中,使用图像增强来提高分类精度。其他技术,如生成对抗网络,可以用来生成合成数据。此外,通过使用更大的带有多个病变的注释数据集,模型的性能可能会进一步提高。这项工作可以通过嵌入物联网(IoT)进行数据收集并使所提出的机制广泛可用来进一步扩展。该模型的性能可以在其他射线照相数据集上进行分析,如全景射线照相、彩色图像以及结合射线照相和彩色图像的混合数据集。

  • 9
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值