POJ3744题解(概率dp,矩阵快速幂)

POJ3744题解

题意

士兵从起点1出发,每次移动有p的概率走一步, 有1-p的概率走两步,已知有n个格子有地雷,问士兵不踩地雷的概率。

笺释

第一道真正意义上的概率dp题目,一开始打算令dp[i]意为更新到i点时踩雷的概率,dp[i]=p*dp[i-1]+(1-p)*dp[i-2],这样写看上去也是对的(第一眼看上去的角度上来说),但是其实并不符合题意,只能在很小的意义上保持正确性。关于错误原因,我是这样理解的:踩雷这个事件本身是没办法连续的,因为人不可能在i-1点踩过雷之后再跑去i点踩雷(假设i-1点和i点都有雷),而这个现实意义上的不可能连续导致我们实际上以合理的角度理解这种更新方式,可能从纯粹数学的角度来说可以以某种方式将其转化为正确的更新方程,但是也已经超出了我的能力之外。
转换思维,考虑人走到i点的概率dp[i],dp[i]=p*dp[i-1]+(1-p)*dp[i-2]。于是将n个地雷分开处理,一个地雷不踩走到终点的概率A是我们要求的,其对立面也就是踩到任意一个地雷的概率,设踩到地雷1的概率为B1,踩到地雷2的概率为B2,最终踩到任意一个地雷的概率也就是B1*B2*B3…*Bn,最终答案也就是1-B1*B2*B3…*Bn。
设地雷1位置为a[1],地雷2位置为a[2]。这个B1,B2也就等于人走到a[1]点的概率dp[a[1]]。
但要注意一点:因为是把n个地雷分开对待,所以走过一个地雷都认为是一个新的起点,将到达地雷下一个格子的dp[a[i]+1]应视为1。
中间的转移部分用矩阵快速幂加速,关于矩阵快速幂的构造,尤其是转移矩阵与初始化矩阵,还不太清晰,等再做几道题再总结。

完整代码

#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
typedef long long ll;
int a[11];
int n;
double p;
struct mat
{
    double a[2][2];
};
mat mat_mul(mat x,mat y)
{
    mat res;
    memset(res.a,0,sizeof(res.a));
    for(int i=0;i<2;i++)
    {
        for(int j=0;j<2;j++)
        {
        for(int k=0;k<2;k++)
        {
            res.a[i][j]=(res.a[i][j]+x.a[i][k]*y.a[k][j]);
          // printf("%d %d %f %f %f\n",i,j,res.a[i][j],x.a[i][k],y.a[k][j]);
        }
        }
        }
   //     printf("%f\n",res.a[0][0]);
    return res;
}
mat mat_pow(int n)
{
    mat res,c;
            c.a[0][0]=p;
      //  cout<<"B"<<c.a[0][0];
        c.a[0][1]=1-p;
        c.a[1][0]=1;
        c.a[1][1]=0;
    memset(res.a,0,sizeof(res.a));
    for(int i=0;i<2;i++) res.a[i][i]=1;
    while(n)
    {
      //  cout<<"A"<<c.a[0][0]<<endl;
        if(n&1) res=mat_mul(res,c);
        c=mat_mul(c,c);
        n=n>>1;
    }
    return res;
}
int main()
{
    while(~scanf("%d %lf",&n,&p))
    {
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&a[i]);
        }
        sort(a+1,a+1+n);
        double ans=1;
        mat tem=mat_pow(a[1]-1);
    //    printf("%f\n",tem.a[0][0]);
        ans*=(1-tem.a[0][0]);
        for(int i=2;i<=n;i++)
        {
            if(a[i]==a[i-1])
            {
                continue;
            }
            mat tem=mat_pow(a[i]-a[i-1]-1);
            ans*=(1-tem.a[0][0]);
        }
        printf("%.7f\n",ans);
    }
    return 0;
}
阅读更多
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页