商业智能系统与组织认知

商业智能系统在组织认知中的作用探析

商业智能系统的出现与影响

近年来,信息技术(IT)在提供商业智能(BI)方面的进步,结合近期的金融危机和经济危机,凸显了在日益竞争且有时不利的商业环境中组织决策的关键性。因此,商业智能系统近年来变得愈发重要(Elbashir和Williams,2007)。多年来,商业智能投入的增长速度一直高于整体IT预算(Gartner新闻稿,2014)。卢夫特曼与扎德(2011)将商业智能列为最具影响力的组织中的技术,而麦克菲和布林约尔松(2012)提供了证据,表明采用商业智能技术可使组织生产力提高4%至6%。因此,商业智能系统被认为在组织决策中发挥着——或至少具有发挥——日益重要的作用。现有文献认可了商业智能系统对决策的贡献(例如,波波维奇等人,2012),并指出节省时间以及提供更好的信息以支持决策是其主要的直接效益(例如,沃森等人,2002)。

关于商业智能的研究主要集中在商业智能的决策支持作用上,但未能解释由此如何获得新知识(阿诺特和帕尔万,2014年;达文波特,2010)。组织持续努力理解其动态的商业环境,以期获得新见解并创造新知识。能够促进知识提升的过程与实践被称为“知行组织”(Choo,1998),这对知识工作至关重要(休厄尔等人,2009;纽厄尔,2014)。若仅将商业智能系统定位为支持决策的工具,则限制了我们对其在其他探索性组织过程中的影响,尤其是对知识工作影响的理解。

从现有文献中可以归纳出两种关于商业智能系统在组织中所起作用的观点。第一种是所谓的“传统”技术导向观点,认为商业智能系统的主要作用是在组织决策过程中将原始数据转化为信息,并将信息转化为知识。这种观点通常认为,决策(以及更广泛的学 习)是一种认知活动,其中商业智能系统及相关技术(例如企业与知识管理系统)能够识别、捕获并生成新见解和知识,最终促成更优的决策(戈尔法雷利等人,2004;程等人,2006;克拉克等人,2007)。由于该观点聚焦于技术,并将知识视为一种惰性的“材料”,即固定不变且可被控制、转移并在决策过程中加以利用(赫拉尔迪,2000;佩特里尼和波泽邦,2009),因此具有局限性,未能充分考虑组织中知识创造及决策活动的社会性、参与性和争议性(库克和布朗,1999)。

其次,有学者提出一种“实践”观点,以克服这种“传统”视角的局限性。该“传统”视角因主要关注技术而“忽视了人”的因素而受到批评(斯万等,1999;加利尔斯和纽厄尔,2001;肖洛和考茨,2010),这与对业务流程重组的批评方式类似(戴文波特,1995;加列尔斯和斯旺,1999)。库克和布朗(1999)认为,认知概念有助于研究者和实践者理解人们在与社会与物理世界互动中的实践行为。因此,这一实践视角聚焦于组织参与者的实际实践,强调知识工作所具有的隐性、情境化和动态特性。

先前提出的观点具有互补性,因此我们认为,只有将知行(我们所做的)与知识(我们所知道的)结合起来,才能更全面地理解商业智能系统对组织活动的影响。然而,尽管学术界对商业智能有着广泛的研究兴趣(例如陈等人,2012年),迄今为止,对于提升商业智能在组织认知过程中的作用以及商业智能系统促进这一过程的潜在机制的理解,仍然缺乏足够的关注。

我们试图通过考察商业智能如何在动态组织环境中促进知行来填补这一空白。为此,我们以一家金融机构中使用商业智能的案例为例,我们采访了在日常工作中使用商业智能系统的员工。我们对商业智能和知识工作相关文献的贡献有两方面。首先,我们基于现有文献构建了一个组织认知的概念框架,并将其作为意义建构工具用于分析案例研究数据。其次,也是本研究的主要贡献,我们强调了商业智能系统在组织认知循环中触发的“数据选择”和“表达”实践所具有的循环特性。由此,我们提供了关于商业智能系统在认知主动过程中具有能动性的实证证据。

在接下来的部分中,首先,我们将简要回顾商业智能系统发展至今的演变历程。接着,我们将剖析当前关于商业智能与组织认知的观点,并在“组织认知作为‘主动过程’”一节中,基于对相关概念的当代文献综述,将“知行”综合理解为一种主动过程。在此基础上,我们构建了概念模型,并明确了研究问题。在研究设计与案例研究展示部分,我们详细说明了案例研究的设计与方法论,随后呈现实地调查的结果。接下来是对研究发现的讨论,在此我们指出了对理论与实践的意义,并提出了未来研究议程。

情境——信息技术与管理决策

商业智能系统是长期以来为支持组织活动和决策而开发的一系列技术中的最新成果(例如,Somogyi & Galliers, 1987)。20世纪50年代大型机的引入促成了数据处理系统的出现,进而发展出管理信息系统(MIS)——旨在支持管理层决策的系统。图1展示了支持管理决策的系统演变过程,例如,从静态批量生成的报告到

示意图0

交互式个性化报告、仪表板和数据集。从20世纪60年代中期开始,小型计算机的出现标志着决策支持系统(DSS)、群体决策支持系统(GDSS)以及随后的主管信息系统(EIS)的诞生(参见努纳梅克,1989;珀文,1998)。管理信息系统(MIS)的输出形式是大量打印件——提供汇总数据的定期报告,但无法为管理层的决策提供交互功能。因此,后来开发了DSS(以及随后的GDSS),旨在以更交互的方式支持半结构化和非结构化决策(戈里和斯科特‐莫顿,1971;阿诺特和珀文,2005;2014)。在20世纪70年代,DSS在文档中引入了搜索功能,催生了基于文档的系统(鲍尔,2007)。随着关系型数据库在20世纪70年代末的发展,捕获日益增长的数据量以及改进建模能力的潜力促成了EIS的出现(阿诺特和珀文,2005)。这些系统采用预定义的信息界面,便于高管进行查询。然而,直到数据仓库和在线分析处理的出现,EIS才开始得到更广泛的应用(因蒙,1992)。大致在同一时期,部分由于业务流程再造导致的裁员(达文波特,1995),知识管理及知识管理系统(KMS)的概念开始兴起(例如莱德纳,2000a,2000b)。这在一定程度上是由于管理层裁员对组织知识保留产生了不利影响所致(加利尔斯和纽厄尔,2001)。因此,我们可以看到,支持管理决策的信息系统(IS)经历了发展演变:从依赖标准化、大批量生产且不允许管理者进行在线查询的定期报告的传统MIS,逐步发展为越来越具有交互性并可按需供单个管理者使用的系统(如EIS和KMS),如图1所示。

这一系列技术的最新发展是商业智能系统(图1中的BIS)。商业智能系统是集成系统,与数据仓库和其他应用程序相连,旨在促进对存储的(实时和历史)数据进行分析,以支持临时管理决策(达文波特,2006)。与早期系统相比,商业智能系统的不同之处在于,它通过整合来自不同业务领域的数据库来实现信息供给。其理念是,来自不同来源的数据的可用性和组合可提供新见解,从而有助于做出更优决策。在商业智能分析中,数据的细粒度也值得提及,因为它使商业智能制品更具可追溯性、透明性且易于定制。卢恩(1958;第315页)是首位在科学语境中使用商业智能一词的人。他将商业智能定义为:‘理解所呈现事实之间相互关系的能力,从而引导行动朝向期望的目标’。商业智能系统包括一系列流程、技术和应用程序,旨在使组织能够收集、存储、分析并转换数据为与决策相关的信息(威克松和沃森,2010;达文波特等人,2012)。

MIS的演变以及商业智能系统出现的历史情境,促成了大量将商业智能系统视为决策支持系统发展脉络中最新一环的BI研究(阿诺特和帕尔万,2014年)。从这一视角来看,决策是评估多个可选行动方案并从中选择最佳方案以推进的过程(马奇,1994年)。在此情境下,决策支持活动针对的是组织内已被识别并承认的具体问题(斯基里乌斯等,2013年)。作为

然而,本文的观点有所不同。我们并不局限于将商业智能系统视为决策支持工具,而是旨在阐明它们在更广泛的组织认知过程与实践中的作用。这些过程与实践包括但不限于决策。正如斯基留斯及其同事所指出的:“商业智能可被视为一种活动,它除了涵盖决策支持外,还具有持续性的特征,能够发现问题并对业务状态保持普遍的认知”(斯基里乌斯等,2013年;第33页)。

因此,受到近期实践导向战略文献的启发(Henfridsson & Lind,2014;黄等人,2014;佩帕德等人,2014;惠廷顿,2014),本文的关注点在于,商业智能系统不仅影响组织决策的过程,还影响组织参与者——他们如何理解、创造和共享知识的实践。在下一节中,我们将回顾关于商业智能系统在组织中作用的现有文献,然后从实证角度探讨商业智能系统在组织环境中的作用。

解构商业智能与组织认知的视角

根据达文波特(2010年)的观点,商业智能的前提和目标是支持决策,并最终促成对组织绩效产生实际影响的更优决策(陈等人,2012;夏尔马等人,2014年)。在过去十年中,商业智能的概念被以多种不同方式定义(肖洛和考茨,2010),一些作者将商业智能视为一种过程(戈尔法雷利等人,2004)、一种产品(隆克维斯特和皮尔蒂马克,2006)、一种单纯的技术(耶尔莫尔等人,2003),或上述所有要素的结合(威克松和沃森,2010)。后一种观点似乎已成为目前最被广泛接受的看法。例如,霍尔斯阿普尔等人(2014)最近的研究将商业智能与分析概念化为一种整体性的基于证据/数据的决策范式,在该范式中,特定的商业智能活动由系统(如收集和存储)以及商业智能用户(如分析)执行,并通过选定的实践(如数据标准)和技术(如查询分析器)实施,经历一个将数据转化为洞察或行动的转换过程。类似地,陈等人(2012)也强调了商业智能的数据驱动特性。

从这一视角来看,商业智能系统被视为支持一个持续的过程,其中数据被收集和存储,然后通过分析转化为信息。这些信息再通过人工分析转化为知识,以支持决策(戈尔法雷利等人,2004;隆克维斯特和皮尔蒂马克,2006;Clark et al. 2007)。Negash(2004;第6页)将商业智能视为一种知识形式,并认为商业智能系统的作用是“将数据转化为有用的信息,并通过人工分析转化为知识”。因此,商业智能系统被视为创造有助于决策的知识的一种手段。

这种观点与“传统”的技术导向视角相似,后者认为信息系统(如企业系统和知识管理系统)在知识创造中的作用是将数据转化为信息,并最终转化为知识(纽厄尔等,2002)。然而,研究表明,商业智能系统并未兑现其全面支持决策者的承诺(布赖登和杰米诺,2008;达文波特,2010),因为更多的信息并不一定带来更好的决策。

决策正在被制定。但这一论点所涉及的远不止于质疑是否确实实现了更优的决策。

这种‘传统’观点将知识创造视为一种心理过程,并将知识视为一种可以原封不动地从一个地方转移到另一个地方的‘物化商品’(Gherardi, 2000)。该观点因过分强调技术而贬低了组织中的‘意义建构’(cf. Weick, 1995)和知行的人类过程而受到批评(Davenport, 1995;Swan et al., 1999;Davison et al., 2012)。加利尔斯和纽厄尔(Galliers & Newell, 2003)强调了数据、信息与知识之间的区别:数据是脱离情境的,通常存在于技术系统中,但通过在特定情境下为特定目的应用个人知识对其进行解读,才变得具有信息性。因此,相同的数据对不同的人来说可能意味着不同的事物。正如贝特森简洁地指出:信息就是产生差异的差异(即如引发事件、符号、标志或表达)(引自 Mingers, 1995, p.289)。

另一方面,认知视角植根于行动与实践。该观点认为,由于知识创造和学习主要是一种社会性和参与性活动(库克和布朗,1999),商业智能系统可能有助于这些心智技能的发展。

因此,相较于将商业智能系统视为一种用于存储、共享和分析知识的“被动容器”从而支持决策(纽厄尔,2014),认知视角更关注商业智能系统如何促进行动,即将商业智能系统视为知识工作中的积极参与者。

尽管商业智能文献尚未直接探讨商业智能在组织认知中的作用,但研究表明,商业智能系统能够支持组织认知的某些特定方面。例如,在Steiger(2010)和威克斯姆和沃森(2010)的研究中,可以找到文献中涉及知行概念的最初痕迹。特别是,Steiger(2010年,第29页)基于野中郁次郎(1991,1994)的螺旋模型,提出了一种将商业智能设计理论视为知识创造的规范性方法,并提出问题:“如何将商业智能聚焦于决策者自身,以发现并增强其心智模型”。

威克斯姆和沃森(2010)讨论了商业智能在组织中日益关键的作用,从一种决策支持工具转变为组织成功的关键前提,强调了商业智能在组织中的“变革性——有时是意想不到的——力量”(威克斯姆和沃森,2010;第14页)。他们将这类组织称为基于商业智能的组织,可被视为由商业智能系统促进(或驱动)知行过程的“知行型”组织。尽管他们的论文中隐含了知行的概念,但无论是Steiger(2010)还是威克斯姆和沃森(2010)都没有明确区分知行与决策支持。

多项研究指出,商业智能系统通过识别机遇和问题(Truxillo 等,2012)以及检测客户行为(Chau 和 Xu,2012)、运营(VanDiver 等,2009)和业务流程(Elbashir 和 Williams,2007)中的趋势或模式,促进组织决策。在《管理信息系统季刊》最近一期关于商业智能的专题中,许多文章将商业智能系统视为一种专注于通过实施商业智能方法和技术来提取情报或新洞察的技术(Abbasi 等,2012;Hu 等,2012;Lau 等,2012;Park 等,2012;Sahoo 等,2012)。提取洞察并利用这些洞察推动行动的过程,与组织认知过程直接相关(Choo,1998)。

尽管我们承认对决策支持文献的这些扩展,但本文更进一步,解释了商业智能系统如何影响实践。特别是,我们研究

组织认知作为一种“主动过程”

根据周(2002)的观点,组织认知的循环包含三个相互交织的过程——意义建构、知识创造和决策——通过这些过程,信息在组织中流动。意义建构过程由环境刺激引发,其结果是产生更明确的信息、共享意义和目标。当组织体验到现有知识中的空白或当前能力的局限性时,便开始知识探索与知识创造(Choo, 2002; p. 79)。这种体验基于从意义建构过程中产生的共享意义和议程。因此,组织参与者通过他们的(交互)行动以及争论,共享、连接并综合其现有的隐性和显性知识,从而产生新知识。这一知识创造过程生成了新能力,并改进了现有能力,使得“新的选择和结果成为可能,扩大了可用的组织应对措施的范围”(Choo, 2002; p. 80)。

丘对组织认知的描述与波兰尼(1958, 1966)、苏卡斯(2009)和科尔布(1984)的观点一致,即组织中的知识创造始于个体的直接或具体经验与行动(Kolb & Kolb, 2005)。这些经验与行动构成了观察与反思的基础,从而产生新的区别。这些新区别被吸收并提炼为抽象概念,并通过协商得出新的行动的意义。这些意义可以被积极地检验,并作为指导来创造新学习(Kolb & Kolb, 2005)。‘当新的区别被提出并被接受时,新的组织知识便会产生;当这些新区别被发展为新产品或新流程,或体现在新的行动中时,创新和学习便分别发生’(Tsoukas, 2009; p. 2)。因此,知识应用于个体的思维中,使得新的区别得以形成1,但只有当这些知识被传达给他人,经过讨论、协商与争议进行转化,并被群体所接受时,这些新区别才会转化为组织知识2。

然而,我们并不认为知行包含两个线性阶段和顺序性步骤,但我们确实希望强调认知与社会方法之间存在的深刻互动。本文采用相互构成观(Marabelli & Newell;2012年)。根据这一观点,知识被视为个人或群体可以拥有的事物,而知行则被视为通过社会实践建构我们世界的具体实践知识活动。这两个维度可以在不同的组织层面(例如个体、群体和组织)被感知和运用。Boland & Tenkasi(1995)描述了视角形成与视角采纳的过程,知识工作正是通过这些过程得以实现。

1这一认知阶段近似于认知方法。2这一阶段近似于认知的社会层面。

新知识得以创造。这种组织知识通过行动推动组织学习的发生——即库克与布朗(1999)所指的知识与知行的“生成性舞蹈”。

因此,我们将知行概念总结为“一种主动过程”(见图2(a)),即在组织环境中被接受并体现在组织变革中的新区别的形成过程,从而产生学习。个人与群体知识以及显性与隐性知识在与社会与物理世界互动时通过知行发挥作用(库克和布朗,1999)。根据奥尔利科夫斯基(2002;第249页)的观点,我们认为,“实践中的知行⋯⋯突出了人类行动在复杂的组织工作中知道如何完成任务方面的关键作用⋯⋯[a] perspective[that] suggests that 知行并非行动者的静态嵌入能力或稳定倾向,而是一种持续的社会成就,随着行动者在实践中与世界互动而不断构成和重构”。

我们承认,如图2(a)所示的任何此类描述都无法也未能充分捕捉前文所述知行的全部复杂性,因为它将知行表现为一个顺序性阶段的过程。而实际上,知行的过程要复杂和混乱得多。

示意图1 组织中的知行作为“主动过程”,(b) 组织中的知行作为“主动混乱过程”.)

将知行视为人们所进行的活动,意味着要分析知识得以实现的社会技术系统的动态(Blackler, 1995)。在此视角下,知行被分析为一种通过语言、技术、协作与控制为中介的现象,包括奥尔利科夫斯基(2006;第460页)所提及的“物质形式、人工制品、空间与基础设施”。这种知行根植于特定情境(时间与空间),具有临时性(因其持续发展)和实用主义性(服务于特定目的)(Blackler, 1995)。

将BI研究映射到图2中组织知行的主动过程,显而易见的是,相关文献主要集中在提供证据,证明商业智能系统有助于

新区别的出现。然而,关于商业智能在将个人知识转化为组织知识,以及将后者转化为行动与学习方面可能发挥的作用,商业智能文献却鲜有涉及。因此,至少在目前的大部分情况下,知行的社会维度在商业智能文献中仍然缺失,尽管一些新的概念性研究开始出现,强调了这一社会维度以及商业智能在决策之外所扮演的角色。例如,伊姆霍夫和怀特(2010)虽然仍聚焦于决策,但指出了商业智能生产者与消费者之间需要协作,以便理解、解释和情境化结果。他们提醒商业智能系统设计者注意,组织中的信息工作者并不一定都是决策者;他们可能承担不同的角色,如商业智能生产者、商业智能消费者或协作者——用他们的话说,即“企业的评论者”(Imhoff and White, 2010; p. 46)。同样,斯托德利(2012)指出,在多个业务部门使用商业智能系统可以带来更广泛的合作和更有效的沟通这一积极副作用,分析师与决策者密切合作,以理解和解决抽象的组织问题。

基于上述背景以及将认知概念视为主动过程——一种由信息技术中介的过程,我们开展了一项案例研究,以考察商业智能系统如何在组织中中介知行。因此,我们的关注点在于商业智能系统如何协助其他组织参与者识别那些对其日常工作生活具有重要意义的差异。更具体地说,我们的研究问题是:商业智能系统如何促进组织环境中的知行?通过回答这一问题,我们旨在阐明新区别是如何产生的,以及商业智能如何促进组织内的行动与学习。

研究设计与案例研究的呈现

本研究的实证基础是一项具有说明性的诠释性案例研究,旨在探讨商业智能在组织情境中的作用与使用。案例研究特别适用于探索性研究,尤其适合深入理解特定情境中的现象(康博伊等(2012);沃尔沙姆(1993))。选择案例研究作为研究方法的另一个原因是所探究问题的性质。案例研究最适合回答“如何”类问题(乔治和贝内特(2004)),因此,本研究适用于探究商业智能系统可能影响组织认知过程的机制。

我们的实证研究背景是一家斯堪的纳维亚金融机构。该组织被公认为一家成功的金融企业,拥有较高的市场份额,雇员超过20,000人。本研究在该组织的不同单位中进行(例如不同的业务部门、IT部门以及与客户直接接触的分支机构等)。我们做出这一选择的原因在于,该组织采用了最先进的商业智能解决方案(如绩效管理系统、在线分析处理以及报表与查询软件工具),以支持和改进决策,并且其决策者具备丰富的经验以及深厚的领域知识。

分行顾问、他们的经理以及商业智能分析师使用商业智能工具(如查询分析器、绩效管理系统和Excel电子表格)进行各种数据分析。绩效管理系统用于监控绩效

全国各个分行的表现情况。例如,管理层可以查看每月新增客户数量、顾问与客户会面的次数、这些会面的成功率(例如是否成功办理贷款)以及相关交易的财务细节(例如提供的价格或利率)。所有这些数据都存储在企业数据仓库中,可通过查询分析器或绩效管理系统进行访问。

后端用于数据建模的技术是微软SQL服务器,使用数据转换服务和SQL Server集成服务。在前端,公司使用分析服务2008R2来构建商业智能多维数据集。分行顾问只能查看自己及其所在分行的绩效数据,无法查看其他分行的数据。支行经理可以查看本分行以及同属一个同类组的其他分行的绩效数据,但不能查看该组以外分行的数据。商业智能分析师则可以访问所有分行的绩效数据。

这些绩效管理活动由一种名为集团管理信息系统(GMI)系统的商业智能应用提供支持——该系统基于一种名为OLAPViewer的内部工具。该公司目前正在将报告迁移到基于SharePoint的网站,并使用Reporting Services和绩效点。对于自助式服务,采用微软的PowerPivot和Tableau等产品。正如一位受访者所述,集团管理信息系统(GMI)系统备受重视:

“⋯⋯[它]是一个主要面向分支机构网络的商业智能系统,旨在使他们能够在市场上基于最佳基础做出本地化决策。”(绩效管理专家)

数据收集

我们最初于2010年对组织内的关键人员进行了10次访谈,并对外部领域专家进行了2次访谈,以协助进行三角验证(德津,1978)。大约两年后又进行了4次后续访谈,以深入了解商业智能系统随时间推移的使用情况和影响。尽管访谈数量有限,但已足以实现概念验证的目标。我们还收集了背景信息(包括组织结构图、报告、电子表格、表单、PowerPoint演示文稿、备忘录和会议纪要),作为访谈数据的补充材料。接受访谈的人员在日常工作中使用商业智能,并代表了不同的管理层级。

访谈形式为半结构化(Wengraf,2001),基于一份访谈提纲。访谈从人口统计学问题和开放式问题开始,随后是聚焦于受访者日常工作及商业智能系统使用情况的问题。我们还要求提供具体示例,以便更好地理解所述内容。在访谈接近尾声时,我们请受访者对其提供的示例进行进一步反思。每次访谈均以英语在其办公室进行,平均持续60分钟。参与者被告知访谈内容涉及其日常活动中对商业智能的使用,但并未提前看到问题。所有访谈均在获得受访者同意后录音并转录。

访谈分析之后,随着我们的数据结构逐渐成形,我们对关键用户进行了后续访谈。这些访谈有助于进一步加深理解

关于系统在一段时间内的影响和使用情况,特别是针对上一轮访谈中提到的示例。如前所述,共进行了四次此类访谈:两次与商业智能分析师进行,主要关注使用情况;另外两次分别与一位顾问和一位支行经理进行,以帮助评估这些商业智能分析对组织认知的影响。因此,数据收集持续了两年时间。尽管访谈次数有限,但在完成编码后,我们确认在第一轮访谈结束后已达到数据饱和(斯特劳斯与科尔宾,2008),至少对于本次探索性研究而言是如此。后续访谈的目的是评估使用和影响如何随时间发生变化。

数据分析

在审阅访谈转录文本和背景材料的同时,结合每次访谈时记录我们印象的实地笔记,我们特别关注个体在其日常实践中使用商业智能的具体表现。这些日常实践构成了我们的分析单位。我们采用持续比较技术和开放编码(斯特劳斯与科尔宾,2008)来分析数据。数据分析是一个迭代过程,在此过程中我们讨论编码直至达成一致(参见附录B中关于数据分析过程中所遵循不同步骤的概述)。这些编码捕捉了诸如“商业智能促进对话”和“对数据的反思”等概念。

编码被标注在访谈转录文本页边的词语、句子甚至段落上。我们共提取了250个与商业智能在组织认知中作用相关的编码。

我们将这些一阶编码整理到Excel电子表格中的数据表中,以支持跨数据源的单一主题或话题(文德洛与雷鲁普,2011)。每一条新的相关陈述都被列在其对应的编码之下。访谈编码工作持续进行,直到无法再识别出数据中更多明显且共有的模式为止。通过这种方式,实现了理论饱和(萨达比,2006)。在分析的下一阶段,将被识别为相似的编码合并为相同的一阶编码,并尽可能使用受访者的语言(斯特劳斯与科尔宾,2008)。在发展一阶编码的同时,类别之间的关联开始浮现并变得清晰。这些关联成为生成二阶主题的基础。

我们通过进一步开发二阶主题对数据进行了分类,使用三个研究子问题来梳理一阶编码。我们还通过分析数据和一阶编码,寻找一阶编码之间的重叠或关联,从而将其整合为高阶主题。

二阶主题的构建过程涉及多次迭代循环。在这些循环中,一阶编码被不断修订、合并,有时甚至被舍弃,以达到更高层次的抽象,并最终形成五个二阶主题(文德洛与雷鲁普,2011)。最后,这五个二阶主题被整合为两个聚合维度,用以捕捉理解商业智能系统在组织认知中作用的相关核心概念。在最后这一阶段——通过迭代分析——“数据选择”和“表达”(及其与“组织认知”的关系)作为清晰可观察的现象浮现出来(艾森哈特,1989)。由此,形成了附录A中所示的数据结构(艾森哈特,1989),并以此作为下一节所呈现分析的基础。我们开始进行分析

通过讲述一个关于组织认知及其过程中商业智能系统作用的例证故事来展开本节,这为展示我们的研究结果奠定了基础。

分析

一个说明性的故事

这个故事涉及分行顾问及其向客户提供的贷款报价。自2000年以来,银行战略在很大程度上聚焦于贷款增长。这意味着顾问、分行经理和高层管理都主要关注对贷款增长的监控与控制。

目标是无论价格如何都要增加贷款发放。因此,定价并未被视为优先事项,尽管价格被监测,但并未采取任何行动:

“没有人考虑过定价是如何制定的,或者我们如何在定价上节省成本。”(分行绩效分析师,2012年)

费用和贷款利率由银行统一设定,根据既定的标准自动从贷款系统中计算得出。然而,顾问并未始终遵守设定的费用和利率,经常给予折扣。总体而言,以下情况逐渐显现:

“⋯⋯在每个地区,都有一些分行能够很好地按照系统建议的价格和贷款费用[来执行],但你也有很多⋯⋯非常多的⋯⋯会给予某种折扣。”(分行绩效分析师,2010年)

全国的定价图如后续句子中所述:

“⋯⋯我们这里的许多地区[国家西部地区] ⋯⋯基本上每笔贷款都[给予折扣];也许并非总是如此,但相比[首都]及其周边地区,他们提供的折扣更高”(分行绩效分析师,2010年)

在2008–2009年金融危机冲击市场的时期,增长型贷款不再被视为可行的解决方案。因此,高层管理开始寻找其他增加银行收益的方法。各部门的中层管理者被要求提出建议。例如,定价部门:

“⋯⋯[这位高级绩效分析师]由于拥有丰富的经验以及与顾问和分行的日常联系,知道各分行的顾问在定价方面存在一些差异。他意识到这里有问题,[但他]需要[以一种能够向高层管理]提出问题的方式展示出来,说明我们这里存在一个问题。”(分行绩效分析师,2012年)

这种“差异”加上高级绩效分析师的个人知识判断,认为这似乎不太对劲,从而引发了分行绩效分析师之间的对话

分行经理被要求对此进行解释。当地市场状况经常被分行经理提及:

“所以,一些[分行经理]说,‘嗯,这是因为住在[西部],的[客户]不愿意支付全额价格’ ⋯⋯而对于[首都]的人来说,价格并不重要。”(分行绩效分析师,2010年)

这个说法多年来一直在公司内流传。每次需要解释给予的折扣时,总会提到当地市场状况,或归因于某个特殊客户案例。尽管总部的分析师们怀疑事实并非如此,但他们无法证明这一点。

同一位分行绩效分析师在后续访谈中描述了他们如何更详细地分析数据:

“首先,我们提出:‘顾问在贷款定价方面是否存在差异?’ 于是我们发现,在区域层面确实存在差异。[首都]和周边地区的价格高于[西部]⋯⋯这促使我们进一步深入分析⋯⋯我们发现同一地区的不同分行之间也存在差异。由此我们推断:‘也许在同一分行内的不同顾问之间也存在差异。’ 有趣的是,我们在所有层面上都能画出相同的曲线。”(分行绩效分析师,2012年)

进一步阐述这一点,由于商业智能系统支持跨分行比较,分行绩效分析师此前曾作出如下观察:

“⋯⋯无论你选择哪个分行⋯⋯你都能画出完全相同的曲线。因此你可以说,在同一个分行中⋯⋯有些顾问每次都坚持价格,而有些顾问每次都给予折扣。当我们查看这个[商业智能分析]时⋯⋯我们发现,即使在[国家],的北部地区,也存在一些实际上能够坚持价格的分行 ⋯⋯即使是在业绩较差的分行中,也有一些顾问能够坚持价格。所以我们真正了解到的是,问题不在于市场,而更在于顾问的行为以及他们对价格的看法。”(分行绩效分析师,2010年)

据分行绩效分析师称,商业智能系统“使得记录[分析师]的论点成为可能”。这些新见解被传达给了所有分行、顾问和高层管理。他指出,在过去4到5年中,组织一直持续努力根据分析绩效数据所获得的新知识来改变和改进定价流程。当被问及商业智能系统在此调整过程中的作用时,分行绩效分析师表示:

“使用商业智能工具对定价进行的分析有助于制定银行的总体战略,改变了我们对产品的整体定价方式。[例如,我们发现]有许多客户并未对银行利润做出贡献。”(分行绩效分析师,2012年)

这一认识促使分析师、分行经理和顾问之间展开了新的讨论,以共享知识来提高价格合规性。例如,

“所以,实际上,改变行为是有可能的⋯⋯我们做了⋯⋯一些会议⋯⋯[结果]我们真正实现的是提升了银行利润[公司的净收益]。我们估计在这方面获得了约5300万欧元⋯⋯因此,这是一个我们可以说采用了最佳绩效,并试图让其他人从中学习的领域。”(分行绩效分析师,2010年)

总结而言,参照图1,我们可以看到分行绩效分析师使用商业智能系统提高了高级管理层和各分行对未遵守定价准则情况的认识。通过讨论与学习,并基于报告实际数据,旧有观念得以改变,新的区别和信念形成并付诸行动。接下来,我们将更深入地探讨我们的研究发现。

商业智能系统在组织认知中引发的持续性循环实践:表达与数据选择

在研究商业智能系统在组织认知过程和商业智能实践应用中的作用时(参见惠廷顿,2006,2014),我们观察到由商业智能系统的使用所引发并加强的两种实践——表达实践和数据选择实践。表达是指个体信念、观点和想法的连贯沟通过程(词汇表,2014)。我们发现了商业智能系统引发表达实践的具体模式和变化。表达实践主要包括三个方面:阐明新区分、阐明不同观点以及阐明组织行动。数据选择实践则包含两个主要方面:按需数据和将数据转化为证据。

阐明新区分

新的区分源于对商业智能数据的解释,即某些内容需要进一步调查和分析。这一观点也在访谈中得到了体现,IT财务业务分析师表示:“⋯⋯我们确实认为,我们90%的商业智能使用是为了说明偏差;解释看起来异常的情况。”从商业智能系统的角度来看,由于商业智能系统的细粒度特性,其增强的分析能力使得这些区分更加明显。然而,应当注意的是,商业智能数据本身并不能保证区分的识别,因为这些区分发生在分析师的思维中。在本案例中,商业智能系统用户仅部分意识到解释过程中涉及的因素:他们的关注焦点是数据的意义。以下来自一位区域经理的引述具有说明性:

“⋯⋯讨论这些有点困难,因为我认为这是第一次有人问我们这样的问题,从某种角度来说,这是一次非常好的体验,因为现在我们突然开始更多地思考为什么我们要查看所有这些数据⋯⋯”(区域经理,2010年)

几乎所有受访者都认为,用个人知识补充数据至关重要。个人知识包括以往的经验和专业知识、常识以及情境知识。以下引述具有代表性:

“我认为我们会一直使用我们的常识,因为必须长期观察数据。”(业务分析师,2010年)

到目前为止,表达实践发生在商业智能系统与用户个人知识之间,从而发出了新区别的声音。这些新区别由商业智能系统与用户个人知识之间的相互作用所框定。在我们的故事中,分析师将国家西部地区“更高折扣”的结果解释为某种“异常”,从而引发了不同行动者之间关于
新的区别和其原因的争议。为了理解这一意外事件,他联系了那些顾问提供更高折扣的分行经理。他所听到的解释是,更高折扣是当地市场状况所致。

阐明不同视角

在试图理解并合理解释认知过程中出现的新区别时,不同观点逐渐显现,并被表达、质疑和协商。例如,顾问阐述了无形因素在其日常工作中的作用;分析师和中层管理者阐述了他们的目标设定和员工管理实践;而高层管理则进一步阐述了他们的战略定价实践。

商业智能分析表明,当地市场状况的说法并不成立。在同一分行中,有些顾问提供折扣,而其他顾问则没有。员工脑海中出现的新区别引发了对其成因的调查。随后,相关各方(分行经理、顾问、业绩分析师和高层管理)之间展开了讨论:

“向顾问展示结果,使分行和各个顾问对存在的问题和事项有了共同的认识。这种对定价的认识创造了讨论的空间,并帮助⋯⋯顾问们谈论他们的困难。”(分行绩效分析师,2012年)

商业智能系统的用户将商业智能系统视为能够促进决策者之间对话的工具,激发围绕较难量化的因素进行反思和讨论。此外,商业智能系统还支持在不同层面开展此类分析。例如,在我们的案例中,我们观察到,该问题基于从商业智能系统中提取的数据在不同的组织层面进行了讨论,从而形成了更加整体性的视角:

“⋯⋯它促成了对话⋯⋯在执行委员会中展开了一场讨论⋯⋯‘我们的定价真的合理吗?’ ⋯⋯而这引发了一种决策过程⋯⋯”(绩效管理专家,2010年)

“一些顾问告诉我,如果他们不能提供折扣,就很难获得新客户,[但是]后来我们讨论了将50%的折扣改为10%,这对他们有效。”(支行经理,2010年)

然而,用户反映商业智能数据并不总是不言自明的;例如,“所以,尽管我们有一些指标能让我们大致了解情况如何,但它并不能说明全部真相。”(区域经理,2010年)因此,商业智能数据仅捕捉到了部分情况,因而有必要去探究那些未被商业智能数据捕捉到的无形因素:

“所以,记分卡无疑是衡量绩效的基础,这一点毋庸置疑,但还有其他因素⋯⋯[比如] ⋯⋯由支行经理实施的本地举措⋯⋯或者他管理员工的方式,又或是他从市场中提取并提供给管理层的其他信息。”(绩效管理专家,2010年)

因此,即使新知识是从对相关事实的理解中获得的,这种知识也仅基于商业智能系统中可用的数据:那些未包含在系统中的“软性事实”——定性事实——缺失了。正是在此时,认知过程从(社会‐)技术导向转变为社会导向。

阐明组织行动

商业智能系统能够实现不同单位之间的比较,整合来自不同系统的数据有助于揭示共通模式,正如我们在故事中通过观察随时间变化的趋势所展示的那样。此外,由于商业智能系统有助于基准比较和共通模式的固化,它们本身就促进了组织行动的实施:

“我认为这个[商业智能系统]将对话从一个层面提升到了另一个层面;使对话变得更加具体且以行动为导向。我们不再讨论这些数据是什么⋯⋯而是讨论我们应该采取什么措施来改善这些数据。”(分行绩效分析师,2012年)

这些比较促进了知识共享和学习。首先,这些比较揭示了哪些单位(分行、经理或顾问)需要进行沟通和知识共享。其次,知识共享讨论可以聚焦于已采取或应采取的具体行动——换句话说,即员工、部门或银行内特定业务领域的过去行动,或他们认为未来需要采取的行动。

“⋯⋯我试图找出某个地方出了什么问题,另一个地方有什么做得好的,这样我们就可以互相学习⋯⋯我会打电话给他们,问‘你们做得这么好,是怎么做的?’以及‘你们的问题是什么,为什么处于亏损状态?’⋯⋯”(业务分析师,2010年)

“分行经理就像簿记员;他们需要事实才能采取行动。”(分行绩效总监,2012年)

然而,我们需要指出的是,组织注意力和战略目标在商业智能系统对组织行动实际产生影响或促进作用的程度方面似乎也起着同样重要的作用。尽管借助商业智能系统进行了观察并加以记录,但在某些情况下,若特定的观察涉及的主题或问题在当时并未被视为特别相关或高优先级,则不会采取行动:

“他们无法持续关注它,因为他们[组织]不断改变衡量标准[你原本集中关注的地方]。你必须每三个月召开一次会议来使他们保持正轨,否则他们的绩效就会下降。”(分行绩效总监,2012年)

按需数据

我们的分析表明,表达新区别、不同观点和组织行动均与从商业智能系统中选择的数据量及数据聚合程度的差异相关。数据选择实践包括过滤特定的数据字段、维度和度量,这些数据被收集和整合,以调查某一现象或衡量不同的指标。数据选择实践包含两个主要主题:按需数据和将数据转化为证据。

从商业智能系统的角度来看,可以通过对数据进行“下钻”操作,识别出与特定问题相关的具体可问责变量。不同聚合层级上按需数据的可用性使得系统能够满足各类利益相关者、决策者和行动执行者的需求。用户在商业智能系统中进行的“下钻”和“上卷”操作,为各项指标及其计算方式提供了可视性和透明性。分行经理可以概览其分支机构的整体情况,同时也可以下钻以识别自身最薄弱的环节或问题所在的具体位置。顾问可以追踪自己随时间推移的表现,并通过数据上卷了解自身对分支机构层面所产生的影响。正是因为具备了这些下钻和上卷的功能,知识共享讨论才能聚焦于具体细节。以下实例对此进行了说明:

“我认为能够深入到顾问级别,甚至进入分支机构询问‘为什么没有采用这个价格’是非常成熟的⋯⋯也许会有充分的理由,但我觉得这为经理提供了非常好的概览。”(区域经理,2010年)

将数据转化为证据

商业智能系统的作用以及数据分析在对话(以及其中发生的争议和协商)中的作用,根据分析所依据的假设以及参与者的观点而有很大差异:

“⋯⋯你需要数据,因为这是唯一能说服人们这是一个严重问题的方法。”(IT信贷流程主管,2010年)

可用的数据越多,或在多个层面上进行的分析越多,且这些分析得出相同的结果,商业智能数据和分析的可信度就越高。例如,在我们举例说明的故事中,向高层管理、地区和分行经理以及顾问所做的演示包含了多个——实际上是17个——图表3,这些图表从不同层面并使用多种不同的指标展示了论点。

“当我展示第一张幻灯片时,他们说,‘嗯,你这是从哪儿得来的?’以及‘我们系统里的所有数据都是错的’,等等。然后我提出了十个观察结果,而且,正如你所看到的,它们都显示了相同的情况。”(分行绩效总监,2012年)

长期的数据可获得性有助于提高分析的感知准确性,进而增强分析在向不同利益相关方群体展示时的说服力。为了基于数据形成强有力的共识,从而推动行动的实施,时间维度及其感知质量都起着重要作用。以下内容表明,随着时间推移在数据中观察到的趋势具有更强的影响:

“⋯⋯你必须观察很长一段时间的数据。如果我们的优秀分行经理中有人业绩很差,我们当然会去分析原因⋯⋯但如果年复一年,与其他类似的分行相比,你的数据一直很差[,那么你肯定有问题]。拥有这些数据很重要[,但不是看短期,而是看长期]。”(业务分析师,2010年)

分析的透明性是另一个似乎能增强商业智能分析说服力的因素。正如前面提到的,所有相关方都可以看到分析是如何生成的。他们可以下钻到原始数据,并因此了解商业智能分析背后的假设或局限性。

“这是一个非常有力的论点,我使用的数据并非来自某个特殊的系统[我的],而是来自你们[分行经理和顾问]都能访问的系统。”(分行绩效总监,2012年)

因此,似乎在多个层面上开展的分析,若包含一段时间内的数据并对所有相关人员透明,则赋予商业智能数据以说服力,并使其在认知过程中的讨论与谈判中得以合法化。然而,诸如商业智能实施中的数据质量等问题依然存在,阻碍了组织充分实现商业智能举措的潜力。例如,

“我们也遇到过几次情况[,其中]发现[商业智能分析]中的数据有误,因为我们重复计算了,或者我们正在与名称相同但实际上不能比较的数字进行对比。”(战略业务单元负责人,2011)

数据质量对于利用商业智能在组织知行中的重要性体现在以下方面:

取自定价演示文稿。

“因为如果你没有正确的数据,你可以做出任意多的花哨东西:都是垃圾和垃圾。你必须拥有数据;这些数据必须是准确的。”(IT信贷流程主管,2010年)

诸如此类的问题继续作为商业智能在组织决策中发挥潜在有益作用的局限性,需要我们在对商业智能系统在组织认知中的作用进行概念化时予以考虑——这也是我们现在要转向的主题。

讨论

本研究的目标是探讨商业智能系统在日常实践的情境中如何促进组织环境下的知行。我们认为,商业智能系统通过两种主要的商业智能驱动的实践——表达和数据选择——来促进组织认知。

商业智能系统使得基于数据选择形成假设成为可能,这些假设可能源于直觉、直觉感受或先前信念与经验,而所选数据在此前可能无法获得。在接下来的段落中,我们将结合知行的主动过程,详细探讨此前提出的问题,特别是商业智能如何促发新区别、组织知识以及组织行动与学习的产生。

由于不同网络和业务领域的数据整合,跨网络分析可能会揭示以前未知的模式,当然前提是同类数据之间的比较。通过整合并选择来自不同领域的特定数据,重新整理并与先前数据进行比较,新的模式得以浮现,从而产生可被个体共享和讨论的新见解。这一发现支持了商业智能文献中早前得出的结论,即新见解被认为是使用商业智能系统所带来的主要益处之一(Elbashir和Williams,2007;Chau 和 Xu,2012;Truxillo 等,2012)。然而,本研究进一步拓展了此前的研究,强调了这些新区别的形成方式以及商业智能系统在此过程中的主动作用。新区别主要是通过个体用户与商业智能系统之间的表达实践和数据选择实践而形成的。贯穿商业智能系统使用的“数据选择”与“表达”所具有的循环特性(参见图3),在个体层面和组织层面均有体现。在组织认知过程中发生的争议与协商中,商业智能系统发挥了积极且具有影响力的作用。个体用户在使用商业智能系统或商业智能分析(系统的产物)时,会从数据中“获取”意义,换句话说,他们会赋予数据以意义。这种意义源于个体与商业智能分析互动过程中所进行的选择与阐明实践。以下示例说明了这一点:当高级绩效分析师分析分支机构网络中顾问的绩效数据时,他进行了数据选择,由此产生了一个新的区别。为了理解这一区别,他通过分析不同层级(地区、相似分行及分行层面)的数据,与系统展开了表达实践。通过这种方式,他得以得出结论:定价“泄漏”并非市场因素所致,而是取决于

示意图2

针对个别顾问的行为。他随后能够向同事阐明这一结论,并说服他们采纳他的观点。

商业智能系统在这两种实践活动中均发挥着积极作用。在数据选择过程中,知识被(重新)生成,特定元素被凸显出来;而在表达过程中,这些元素的意义会因参与其中的“行动者”(用户、商业智能工具和数据)组合不同而发生变化。纽厄尔(2014)将此称为翻译过程,其中人和物体作为中介,主动进行知识转化。因此,本研究通过表达和数据选择的实践,为商业智能系统在知识转化方面的可执行性结果提供了实证证据。

关于组织知识的促进,除了商业智能系统在个体层面揭示新见解的作用之外,商业智能数据本身还在将这些见解转化为可用于采取行动的组织知识方面发挥着另一项重要作用。为了理解这些先前未知的模式,个体与组织中的其他人以及系统本身展开对话。正如前文所述,可能会出现争议与协商(库恩与杰克逊,2008),但商业智能分析会从不同角度激发问题表述、解释和观点。这些正是苏卡斯(2009)以及博兰德和滕卡西(1995)所提到的对话式交流和视角采纳。富有成效的对话会导致“自我疏离”:即个体从自己习惯的、或许缺乏反思的方式中抽离出来。博兰德和滕卡西(1995;第357页)认为,知识整合“是一个视角采纳的问题”,即“组织中个体独特的知识与其他人的知识进行交换、评估和整合的过程”。我们的数据表明,商业智能系统可以成为激发此类对话式交流的催化剂。

此外,这种问题表述可以在组织层面促成共同理解。正如布朗(1981)所指出的,有效沟通要求能够切实地设想“他人”的观点。其他学者,如罗梅特维特(1980;第126页)也肯定了这一点:“在多元社会中,交际能力的一个关键组成部分是我们采用不同他人视角的能力。”商业智能系统的能力

使人们能够下钻和上卷数据,使他们能够在每个步骤中跟踪数据,从而促进对分析背后假设的讨论,进而促成采纳或更好地理解其他观点。

根据舒尔策(2000;第7页)的观点,“从知识社会学的角度来看,⋯⋯知识创造的困难在于说服他人相信其⋯⋯知识主张的可靠性与有效性”。将其应用于我们的分析表明,商业智能系统能够促进隐性知识的表达,这不仅是因为个人表达知识的能力,还在于“减少社会群体中其他人对知识表达所施加的限制”(舒尔策,2000;第7页)。

我们的数据支持舒尔策的观点,即商业智能系统提供了知识为了被他人接受所需采取的“形式”,以及知识工作者为支持其新知识主张而必须提供的证据(Schultze,2000年;第7页)。例如,数据显示,经理通过使用针对同一现象的大量观测,并借助数据选择实践将数据转化为证据,同时提供透明性,因为分析中的每一步都可以追溯到系统中的数据。因此,商业智能系统有助于实现舒尔策所讨论的主观性与客观性的平衡,使主观见解和隐性知识得以表达,并在商业智能数据的支持下变得可被接受和认可。这得益于商业智能系统能够在不同分析层次上提供数据,从而实现比较与交叉分析,促进对话,并揭示新的区分与洞见。因此,似乎在多个层次上开展的商业智能分析(包括纵向数据,并对所有相关方保持透明),赋予了商业智能数据以说服力,并使其在“知行”过程中的讨论与谈判中得到合法化。这一观察也可能解释了当前产业界与学术界对商业智能和“大数据”日益增长的兴趣(达文波特等人,2012年)。

在组织层面,商业智能系统促进了一种解释过程,行动者通过数据驱动的讨论相互影响。此类讨论可引发视角形成过程(博兰德和滕卡西,1995),即个体通过更深入地分析来探究并确认从数据中产生的新意义。一旦这种新意义经过论证并达成一致,便会在个人所处的社区中转化为一种叙事(参见波波维奇等人,2014),从而强化组织认知,并通过表达实践加强视角形成。当这一新知识涉及另一个社区时,也会触发该社区中的视角采纳过程。在此过程中,每种存在的专业知识都可以表达其观点,并帮助具有不同专长的其他行动者更容易识别和接受他人的不同认知方式。因此,商业智能系统可以作为视角采纳过程中的主动参与者,通过触发数据选择与阐明实践,在不同分析层次上借助对话式交流促进独特知识的利用。作为人工制品的商业智能数据,因而可成为讨论和协商已表达的信念与实践这一集体过程的主动参与者。

关于组织行动与学习的促进作用,研究表明,当达成共同理解或出现新情况时,行动更有可能发生

知识在不同利益相关者之间被接受(尽管经过协商)。这种理解和接受是通过基于数据比较或基准实践来阐明所需行动的实践实现的。

然而,正如后续访谈中所报告的那样,当管理层关注的主题并非来自分析结果时,从商业智能系统和分析中获得的益处会显著减少,因为采取的行动较少。也就是说,即使员工通过分析商业智能数据获得了新见解,但如果其上级正专注于其他组织问题,他们也不一定会根据这些新见解采取行动。

距离第一轮访谈两年后,关注点已转向其他组织目标(例如从定价转向信贷,后来又转向客户满意度),导致分行经理不愿再以同样的投入和坚持去落实两年前通过知行循环获得的知识。事实上,目前价格曲线正逐渐恢复到商业智能分析实施之前的状态。因此,顾问在定价水平方面的业绩已开始下降至商业智能数据分析触发知行循环之前所存在的水平。

在此情况下,商业智能作为组织认知过程中的主动参与者所发挥的作用已不那么重要,其他参与者则承担了更为重要的角色。因此,组织关注在很大程度上决定了通过商业智能系统促进的选择与阐明实践,组织认知循环将持续发生的程度及其持续时间。

结论

总之,与“传统”主流的IS/BI文献中通常仅关注商业智能系统对决策支持的影响不同,我们的研究聚焦于认知概念,并探讨了商业智能系统如何影响个体在日常实践中的知识工作。因此,我们认为本研究的贡献体现在两个方面。首先,我们基于现有文献构建了一个组织认知过程的概念框架,并将其作为本案例研究中的意义建构(参见威克,1995)工具。其次,也是我们所认为的主要贡献,我们揭示了商业智能系统在组织认知循环中触发的“数据选择”与“表述”实践所具有的循环特性。由此,我们提供了关于商业智能系统在主动认知过程中具有能动性的实证证据。因此,我们认为将商业智能系统视为知识工作中的主动参与者更具价值。

以这一新视角为背景,我们阐述了商业智能技术能够促进知行过程的具体实践,同时也指出了其局限性,因为其他因素(如制度性、政治性等)也可能产生影响。因此,尽管在本案例中商业智能的初期影响相当显著,但我们注意到,随着时间推移,银行又逐渐回归旧有模式,出现了不同的管理指令。

这并不是说商业智能系统的能动性以及商业智能系统的分析师和用户所能做的事情没有局限性或边界。访谈表明,商业智能系统在组织中的实施及其使用方面都存在严重问题,正如战略业务单元负责人和IT信贷流程主管所指出的那样。

我们的数据显示,数据质量仍然是BI用户关注的问题之一。商业智能数据的质量较差——从而导致人们质疑这些数据是否真的是“事实”——是组织可能需要应对的另一个问题。这一问题会导致商业智能系统的使用减少(DeLone & McLean, 2003),进而削弱其对组织认知的影响。高质量的数据——至少是被认为具有高质量的数据——是商业智能系统和数据对组织认知产生预期效果的前提条件。然而,正如我们的受访者所反映的,当在较长时间内存在大量观测数据且总体趋势明显可见时,数据质量问题的重要性就会降低。

本研究存在若干局限性。首先,尽管我们承认存在争议与协商,但并未考虑权力因素及其对商业智能数据使用的可能影响。特别值得探讨的是意义权力如何作用于商业智能数据,以及商业智能数据如何影响或重新分配意义权力(Azad & Faraj, 2011)。在此情境下,基于此类权力因素(例如,Pfeffer 1981;Langley 1989)开展进一步研究将十分有益。

第二个局限性在于采用了单一案例研究方法。我们无法由此得出该案例组织在任何方面都代表了商业智能系统在所有组织环境中使用方式的结论。我们的主张更为有限且谨慎。在本案例中,商业智能通过数据选择与表述实践来中介组织认知的方式,是理解商业智能系统如何改善组织认知的一个步骤。未来研究若能利用本案例所形成的模型,将有助于检验其可推广性。

因此,由于本研究基于一个虽然是纵向的单一案例研究,研究发现应谨慎解读。

第三个局限性与我们的访谈数据有关。由于访谈是以英语进行的,而英语并非参与者的母语,因此受访者在表达自己时可能存在一定的语言限制。尽管我们已谨慎地让受访者核对转录文本,并在后期进行了后续访谈以确认准确性,但这仍然是一个局限性,有待通过进一步的案例研究加以克服。

另一个局限性在于图3中对组织认知过程的呈现方式较为线性。我们承认,正如前文所述,知行过程是非线性的、非顺序性的,而往往是混乱的,常常伴随着争议与协商。然而,为了清晰起见,我们选择展示此版本的图示,而非类似于图2(b)那样更为混乱的版本。

此外,在其他文化背景下开展进一步的研究也至关重要,这些研究可以支持、拓展或否定我们的研究发现(Hong et al., 2006;Leidner, 2010)。因此,尽管存在这些局限性,我们相信采用实践视角来研究商业智能为BI研究开辟了新的方向,该方向在考虑商业智能系统在组织中的影响时充分关注实际实践,而这些初步研究发现将为未来的研究提供基础,以验证、拓展和挑战我们的结论。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值