微积分:2.1导数中的中值定理


本课程来自 深度之眼,部分截图来自课程视频。
【第二章 微积分】2.1导数中的中值定理
在线LaTeX公式编辑器

任务详解:

这节课主要介绍了函数的导数,中值定理与洛必达法则等知识点。
掌握目标:
1、掌握导数的意义以及初等函数导数公式,求导法则
2、了解中值定理,洛必达法则
,泰勒公式
3、了解函数的凹凸性
4、掌握函数的极值,以及极值的充要条件
5、掌握不定积分,定积分的计算,第一第二类换元,分部积分法,牛顿莱布尼茨公式

1.函数的导数

导数的引入:

1.直线运动的速度
在这里插入图片描述
计算 t 0 t_0 t0的瞬时速度为:
v = lim ⁡ t → t 0 f ( t ) − f ( t 0 ) t − t 0 v=\lim_{t \to t_0}\frac{f(t)-f(t_0)}{t-t_0} v=tt0limtt0f(t)f(t0)
2.曲线的切线
在这里插入图片描述
求MN两点间割线的斜率(当N无限靠近M的时候,就相当于M点切线的斜率):
k = lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 k=\lim_{x \to x_0}\frac{f(x)-f(x_0)}{x-x_0} k=xx0limxx0f(x)f(x0)

定义

定义设函数 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0的某个邻域内有定义,当自变量 x x x x 0 x_0 x0处取得增量 Δ x \Delta x Δx(点 x 0 + Δ x x_0+\Delta x x0+Δx仍在该邻域内)时,相应地,因变量取得增量 Δ y = f ( x 0 + Δ x ) − f ( x 0 ) \Delta y= f(x_0+\Delta x)-f(x_0) Δy=f(x0+Δxf(x0);如果 Δ y \Delta y Δy Δ x \Delta x Δx之比当 Δ x → 0 \Delta x \to 0 Δx0时的极限存在,那么称函数 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0处可导,并称这个极限为函数 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0处的导数,记为 f ′ ( x 0 ) f'(x_0) f(x0),即
f ′ ( x 0 ) = lim ⁡ Δ x → 0 Δ y Δ x = lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x f'(x_0)=\lim_{\Delta x \to 0}\frac{\Delta y}{\Delta x}=\lim_{\Delta x \to 0}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x} f(x0)=Δx0limΔxΔy=Δx0limΔxf(x0+Δx)f(x0)
也可记作 y ′ ∣ x = x 0 y'|_{x=x_0} yx=x0, d y d x ∣ x = x 0 \frac{dy}{dx}|_{x=x_0} dxdyx=x0 d f ( x ) d x ∣ x = x 0 \frac{df(x)}{dx}|_{x=x_0} dxdf(x)x=x0

常用函数的导数

函数 f ( x ) = C ( C 为 常 数 ) f(x)=C(C为常数) f(x)=CC的导数为:0
函数 f ( x ) = x n ( n ∈ N ) f(x)=x^n(n\in N) f(x)=xnnN的导数为: n x n − 1 nx^{n-1} nxn1
幂函数 f ( x ) = x μ ( μ ∈ R ) f(x)=x^\mu(\mu \in R) f(x)=xμμR的导数为: μ x μ − 1 \mu x^{\mu-1} μxμ1
函数 f ( x ) = s i n x f(x)=sinx f(x)=sinx的导数为: c o s x cosx cosx
函数 f ( x ) = a x ( a > 0 , a ≠ 1 ) f(x)=a^x(a>0,a\neq 1) f(x)=axa>0a=1的导数为: a x l n a a^xlna axlna,特别的当 a = e a=e a=e时, ( e x ) ′ = e x (e^x)'=ex (ex)=ex
函数 f ( x ) = l o g a x ( a > 0 , a ≠ 1 ) f(x)=log_ax(a>0,a\neq 1) f(x)=logaxa>0a=1的导数为: 1 x l n a \frac{1}{xlna} xlna1,特别的当 a = e a=e a=e时, ( l n x ) ′ = 1 x (lnx)'={1}{x} (lnx)=1x

定理:导数存在<==>左右导数存在且相等
例题:函数 f ( x ) = ∣ x ∣ f(x)=|x| f(x)=x x = 0 x=0 x=0处的导数不存在
lim ⁡ Δ x → 0 ∣ x + Δ x ∣ − ∣ x ∣ Δ x = lim ⁡ Δ x → 0 ∣ Δ x ∣ Δ x \lim_{\Delta x\to 0}\frac{|x+\Delta x|-|x|}{\Delta x}=\lim_{\Delta x\to 0}\frac{|\Delta x|}{\Delta x} Δx0limΔxx+Δxx=Δx0limΔxΔx
当(右极限或叫右导数) Δ x → 0 + , Δ x Δ x = 1 \Delta x\to 0^+,\frac{\Delta x}{\Delta x}=1 Δx0+,ΔxΔx=1
当(左极限或叫左导数) Δ x → 0 − , Δ x Δ x = − 1 \Delta x\to 0^-,\frac{\Delta x}{\Delta x}=-1 Δx0,ΔxΔx=1
左右极限不相等,故导数不存在。

求导法则

1. [ u ( x ) ± v ( x ) ] ′ = u ( x ) ′ ± v ( x ) ′ 1.[u(x)\pm v(x)]'=u(x)'\pm v(x)' 1.[u(x)±v(x)]=u(x)±v(x)
2. [ u ( x ) v ( x ) ] ′ = u ( x ) ′ v ( x ) + u ( x ) v ( x ) ′ 2.[u(x) v(x)]'=u(x)' v(x)+u(x) v(x)' 2.[u(x)v(x)]=u(x)v(x)+u(x)v(x)
3. [ u ( x ) v ( x ) ] = u ( x ) ′ v ( x ) − u ( x ) v ( x ) ′ v 2 ( x ) ( v ( x ) ≠ 0 ) 3.\left[ \frac{u(x)}{v(x)}\right]=\frac{u(x)' v(x)-u(x) v(x)'}{v^2(x)}\quad (v(x)\neq 0) 3.[v(x)u(x)]=v2(x)u(x)v(x)u(x)v(x)(v(x)=0)

链式法则

如果 u = g ( x ) u=g(x) u=g(x)在点x可导,而 y = f ( u ) y=f(u) y=f(u)在点 u = g ( x ) u=g(x) u=g(x)可导,那么复合函数 y = f [ g ( x ) ] y=f[g(x)] y=f[g(x)]在点 x x x可导,且其导数为:
d y d x = f ′ ( u ) ⋅ g ′ ( x ) 或 d y d x = d y d u ⋅ d u d x \frac{dy}{dx}=f'(u)\cdot g'(x)或\frac{dy}{dx}=\frac{dy}{du}\cdot\frac{du}{dx} dxdy=f(u)g(x)dxdy=dudydxdu

高阶导数

在这里插入图片描述

2.中值定理与洛必达法则

拉格朗日中值定理

如果函数 f ( x ) f(x) f(x)满足
(1)在闭区间 [ a , b ] [a,b] [a,b]上连续;
(2)在开区间 ( a , b ) (a,b) (a,b)内可导,那么在 ( a , b ) (a,b) (a,b)内至少有一点 ( a < f < b ) (a<f<b) (a<f<b),使等式
f ( b ) − f ( a ) = f ′ ( ξ ) ( b − a ) f(b)-f(a)=f'(\xi)(b-a) f(b)f(a)=f(ξ)(ba)
成立.
从图像上看就是a,b两点间的曲线上,总是可以找到一个点的切线的斜率与线ab的斜率相等(二者平行) f ( b ) − f ( a ) ( b − a ) = f ′ ( ξ ) \frac{f(b)-f(a)}{(b-a)}=f'(\xi) (ba)f(b)f(a)=f(ξ)
在这里插入图片描述
拉格朗日中值定理是柯西中值定理的一种特殊情况(就是 F ( x ) = x F(x)=x F(x)=x)。

柯西中值定理

如果函数 f ( x ) f(x) f(x) F ( x ) F(x) F(x)满足
(1)在闭区间 [ a , b ] [a,b] [a,b]上连续;
(2)在开区间 ( a , b ) (a,b) (a,b)内可导;
(3)对任一 x ∈ ( a , b ) , F ′ ( x ) ≠ 0 x\in (a,b),F'(x)\neq 0 x(a,b),F(x)=0,那么在 ( a , b ) (a,b) (a,b)内至少有一点,使等式
f ( b ) − f ( a ) F ( b ) − F ( a ) = f ′ ( ξ ) F ′ ( ξ ) \frac{f(b)-f(a)}{F(b)-F(a)}=\frac{f'(\xi)}{F'(\xi)} F(b)F(a)f(b)f(a)=F(ξ)f(ξ)
成立。

洛必达法则

主要是用来求两个无穷小之比或两个无穷大之比的极限。
方法是:通过分子分母分别求导再求极限。
证明过程用到了柯西中值定理。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

oldmao_2000

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值