PTA 实验4-1-12 黑洞数 (20分)

 

实验4-1-12 黑洞数 (20分)

黑洞数也称为陷阱数,又称“Kaprekar问题”,是一类具有奇特转换特性的数。

任何一个各位数字不全相同的三位数,经有限次“重排求差”操作,总会得到495。最后所得的495即为三位黑洞数。所谓“重排求差”操作即组成该数的数字重排后的最大数减去重排后的最小数。(6174为四位黑洞数。)

例如,对三位数207:

  • 第1次重排求差得:720 - 27 = 693;
  • 第2次重排求差得:963 - 369 = 594;
  • 第3次重排求差得:954 - 459 = 495;

以后会停留在495这一黑洞数。如果三位数的3个数字全相同,一次转换后即为0。

任意输入一个三位数,编程给出重排求差的过程。

输入格式:

输入在一行中给出一个三位数。

输出格式:

按照以下格式输出重排求差的过程:

序号: 数字重排后的最大数 - 重排后的最小数 = 差值

 

序号从1开始,直到495出现在等号右边为止。

输入样例:

123

 

输出样例:

1: 321 - 123 = 198
2: 981 - 189 = 792
3: 972 - 279 = 693
4: 963 - 369 = 594
5: 954 - 459 = 495
#include <stdio.h>
int main() {
    int orign = 0;
    scanf("%d", &orign);
    int n = orign;
    int a,b,c;
    int m= 1;
    int maxsum,minsum;
        do{
            a = n / 100;
            b = (n - 100 * a) / 10;
            c = n - 100 * a - 10 * b;
            if(a >= c && c >= b) {
                maxsum = 100 * a + 10 * c + b;
                minsum = 100 * b + 10 * c + a;
            }else if(a >= b && b >= c){
                maxsum = 100 * a + 10 * b + c;
                minsum = 100 * c + 10 * b + a;
            }else if (b >= a&& a >= c){
                maxsum = 100 * b + 10 * a + c;
                minsum = 100 * c + 10 * a + b;
            }else if(b >= c && c >= a){
                maxsum = 100 *b + 10 * c + a;
                minsum = 100 * a + 10 * c + b;
            }else if(c >= a&& a >= b){
                maxsum = 100 * c + 10 * a + b;
                minsum = 100 * b + 10 * a + c;
            }else if(c >=b && b >= a){
                maxsum = 100 *c + 10 * b + a;
                minsum = 100 * a + 10 * b + c;
            } m ++;
            n = maxsum - minsum;
            if (a == b && b == c){
                printf("1: %d - %d = %d\n",maxsum,minsum,n);
                break;
            }
            printf("%d: %d - %d = %d\n",m-1,maxsum,minsum,n);
        } while(n != 495);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值