
Recurrent Neural Network (RNN)
Omni-Space
专注Android, Mobile Security and AI
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
The Unreasonable Effectiveness of Recurrent Neural Networks
There’s something magical about Recurrent Neural Networks (RNNs). I still remember when I trained my first recurrent network for Image Captioning. Within a few dozen minutes of training my first bab转载 2017-02-09 08:19:26 · 4260 阅读 · 0 评论 -
Understanding LSTM Networks
Recurrent Neural NetworksHumans don’t start their thinking from scratch every second. As you read this essay, you understand each word based on your understanding of previous words. You don’t thro转载 2017-10-01 15:16:31 · 445 阅读 · 0 评论 -
RNNs in Tensorflow, a Practical Guide and Undocumented Features
In a previous tutorial series I went over some of the theory behind Recurrent Neural Networks (RNNs) and the implementation of a simple RNN from scratch. That’s a useful exercise, but in practice we转载 2017-10-10 01:34:50 · 532 阅读 · 0 评论 -
Simple LSTM
A few weeks ago I released some code on Github to help people understand how LSTM’s work at the implementation level. The forward pass is well explained elsewhere and is straightforward to understan转载 2017-10-02 14:50:33 · 715 阅读 · 0 评论 -
LSTM implementation explained
PrefaceFor a long time I’ve been looking for a good tutorial on implementing LSTM networks. They seemed to be complicated and I’ve never done anything with them before. Quick googling didn’t help,转载 2017-10-02 14:52:26 · 504 阅读 · 0 评论 -
A Beginner’s Guide to Recurrent Networks and LSTMs
ContentsFeedforward NetworksRecurrent NetworksBackpropagation Through TimeVanishing and Exploding GradientsLong Short-Term Memory Units (LSTMs)Capturing Diverse Time ScalesCode Sample & CommentsRe转载 2017-10-02 14:56:51 · 697 阅读 · 0 评论 -
Recurrent neural networks deep dive
A recurrent neural network (RNN) is a class of neural networks that includes weighted connections within a layer (compared with traditional feed-forward networks, where connects feed only to subsequen转载 2017-10-02 15:14:55 · 740 阅读 · 0 评论 -
Waybackprop
WaybackpropTL;DRI review (with animations!) backprop and truncated backprop through time (TBPTT), and introduce a multi-scale adaptation of TBPTT to hierarchical recurrent neural networks that has转载 2017-10-27 00:45:21 · 534 阅读 · 0 评论 -
Draw Together with a Neural Network
Try the sketch-rnn demo.For mobile users on a cellular data connection: The size of this first demo is around 5 MB of data. Everytime you change the model in the demo, you will use another 5 MB of转载 2017-10-27 00:51:30 · 804 阅读 · 2 评论 -
How to Visualize Your Recurrent Neural Network with Attention in Keras
Neural networks are taking over every part of our lives. In particular — thanks to deep learning — Siri can fetch you a taxi using your voice; and Google can enhance and organize your photos automagic转载 2017-10-30 15:13:03 · 1832 阅读 · 0 评论 -
Materials to understand LSTM
People never judge an academic paper by those user experience standards that they apply to software. If the purpose of a paper were really promoting understanding, then most of them suck. A while ag转载 2017-11-01 12:10:20 · 461 阅读 · 0 评论 -
从Tensorflow代码中理解LSTM网络
目录RNNLSTM参考文档与引子缩略词 RNN (Recurrent neural network) 循环神经网络 LSTM (Long short-term memory) 长短期记忆人工神经网络当我们在谷歌搜索LSTM这个关键字时,搜索结果的第一条就是一篇非常著名的博客 Understanding LSTM Networks 来介绍LSTM网络,转载 2017-11-01 15:20:21 · 3554 阅读 · 0 评论 -
RNN LSTM 循环神经网络 (分类例子)
学习资料:相关代码为 TF 2017 打造的新版可视化教学代码机器学习-简介系列 什么是RNN机器学习-简介系列 什么是LSTM RNN本代码基于网上这一份代码 code设置 RNN 的参数这次我们会使用 RNN 来进行分类的训练 (Classification). 会继续使用到手写数字 MNIST 数据集. 让 RNN 从每张图片的第一行像素读到最后一行, 然后再进行分类转载 2017-11-01 16:02:14 · 10242 阅读 · 0 评论 -
BP,RNN 和 LSTM暨《Supervised Sequence Labelling with Recurrent Neural Networks-2012》阅读笔记
一、BackPropagationwljkwjkl:表示第l−1l−1层第k个神经元到第ll层第j个神经元的连接权重;bljbjl:表示第ll层第j个神经元的偏置;zljzjl:表示第ll层第j个神经元的带权输入;aljajl:表示第ll层第j个神经元的激活值;σσ:表示一个激活函数(sigmoid,relu,tanh);zlj=∑kwljkal−1k+bljzjl=∑kwjkla转载 2017-10-18 08:51:09 · 2010 阅读 · 0 评论 -
Tensorflow中GRU和LSTM的权重初始化
GRU和LSTM权重初始化在编写模型的时候,有时候你希望RNN用某种特别的方式初始化RNN的权重矩阵,比如xaiver或者orthogonal,这时候呢,只需要:12345678910cell = LSTMCell if self.args.use_lstm else GRUCellwith tf.variable_scope(initializer=tf.转载 2017-10-18 08:47:18 · 12456 阅读 · 0 评论 -
(Unfinished)RNN-循环神经网络之LSTM和GRU-04介绍及推导
(Unfinished)尚未完成一、说明关于LSTM的cell结构和一些计算在之前已经介绍了,可以点击这里查看本篇博客主要涉及一下内容:LSTM前向计算说明(之前的博客中LSTM部分实际已经提到过,这里结合图更详细说明)二、LSTM前向计算step by step1、结构review我们知道RNN的结构如下图注意cell中的神经元转载 2017-09-21 14:08:12 · 1531 阅读 · 0 评论 -
RNN以及LSTM的介绍和公式梳理
目录(?)[+]前言好久没用正儿八经地写博客了,csdn居然也有了markdown的编辑器了,最近花了不少时间看RNN以及LSTM的论文,在组内『夜校』分享过了,再在这里总结一下发出来吧,按照我讲解的思路,理解RNN以及LSTM的算法流程并推导一遍应该是没有问题的。RNN最近做出了很多非常漂亮的成果,比如Alex Graves的手写文字生成、名声大振的『根据图片生成描述文字』、转载 2017-02-18 03:36:34 · 2848 阅读 · 0 评论 -
LSTM(Long Short Term Memory)和RNN(Recurrent)教程收集 (知乎)
作者:知乎用户链接:https://www.zhihu.com/question/29411132/answer/51515231来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。刚好毕设相关,论文写完顺手就答了先给出一个最快的了解+上手的教程:直接看theano官网的LSTM教程+代码:LSTM Networks for Sen转载 2017-09-20 12:52:49 · 13449 阅读 · 1 评论 -
Understanding LSTM Networks
Recurrent Neural NetworksHumans don’t start their thinking from scratch every second. As you read this essay, you understand each word based on your understanding of previous words. You don’t thro转载 2017-09-20 13:17:30 · 334 阅读 · 0 评论 -
Attention and Augmented Recurrent Neural Networks
Recurrent neural networks are one of the staples of deep learning, allowing neural networks to work with sequences of data like text, audio and video. They can be used to boil a sequence down into a h转载 2017-09-20 13:20:01 · 705 阅读 · 0 评论 -
Recurrent Neural Networks Tutorial, Part 1 – Introduction to RNNs
Recurrent Neural Networks (RNNs) are popular models that have shown great promise in many NLP tasks. But despite their recent popularity I’ve only found a limited number of resources that throughly ex转载 2017-09-20 13:21:44 · 1193 阅读 · 0 评论 -
Recurrent Neural Networks Tutorial, Part 2 – Implementing a RNN with Python, Numpy and Theano
This the second part of the Recurrent Neural Network Tutorial. The first part is here.Code to follow along is on Github.In this part we will implement a full Recurrent Neural Network from sc转载 2017-09-20 13:23:24 · 450 阅读 · 0 评论 -
循环神经网络 (RNN)
RNN是什么循环神经网络即recurrent neural network,它的提出主要是为了处理序列数据,序列数据是什么?就是前面的输入和后面的输入是有关联的,比如一句话,前后的词都是有关系的,“我肚子饿了,准备去xx”,根据前面的输入判断“xx”很大可能就是“吃饭”。这个就是序列数据。循环神经网络有很多变种,比如LSTM、GRU等,这里搞清楚基础的循环神经网络的思想,对于理解其转载 2017-10-08 13:45:42 · 965 阅读 · 0 评论 -
深度学习的seq2seq模型
从rnn结构说起根据输出和输入序列不同数量rnn可以有多种不同的结构,不同结构自然就有不同的引用场合。如下图,one to one 结构,仅仅只是简单的给一个输入得到一个输出,此处并未体现序列的特征,例如图像分类场景。one to many 结构,给一个输入得到一系列输出,这种结构可用于生产图片描述的场景。many to one 结构,给一系列输入得到一个输出,这种结构可用于文本情转载 2017-10-08 13:48:45 · 856 阅读 · 0 评论 -
LSTM神经网络 和 GRU神经网络
LSTM是什么LSTM即Long Short Memory Network,长短时记忆网络。它其实是属于RNN的一种变种,可以说它是为了克服RNN无法很好处理远距离依赖而提出的。我们说RNN不能处理距离较远的序列是因为训练时很有可能会出现梯度消失,即通过下面的公式训练时很可能会发生指数缩小,让RNN失去了对较远时刻的感知能力。∂E∂W=∑t∂Et∂W=∑tk=0∂Et∂ne转载 2017-10-08 13:51:30 · 6582 阅读 · 0 评论 -
RNN-循环神经网络和LSTM_01基础
一、介绍1、什么是RNN传统的神经网络是层与层之间是全连接的,但是每层之间的神经元是没有连接的(其实是假设各个数据之间是独立的)这种结构不善于处理序列化的问题。比如要预测句子中的下一个单词是什么,这往往与前面的单词有很大的关联,因为句子里面的单词并不是独立的。RNN 的结构说明当前的的输出与前面的输出也有关,即隐层之间的节点不再是无连接的,而是有连接的基本的结构转载 2017-09-21 14:04:04 · 849 阅读 · 0 评论 -
RNN-循环神经网络-02Tensorflow中的实现
关于基本的RNN和LSTM的概念和BPTT算法可以查看这里参考文章:https://r2rt.com/recurrent-neural-networks-in-tensorflow-i.htmlhttps://r2rt.com/styles-of-truncated-backpropagation.html一、源代码实现一个binary例子1、例子描述(1)转载 2017-09-21 14:05:33 · 575 阅读 · 0 评论 -
RNN-LSTM循环神经网络-03Tensorflow进阶实现
全部代码:点击这里查看关于Tensorflow实现一个简单的二元序列的例子可以点击这里查看关于RNN和LSTM的基础可以查看这里这篇博客主要包含以下内容训练一个RNN模型逐字符生成文本数据(最后的部分)使用Tensorflow的scan函数实现dynamic_rnn动态创建的效果使用multiple RNN创建多层的RNN实现Dropout和Layer Normalization的转载 2017-09-21 14:06:44 · 4047 阅读 · 0 评论 -
All of Recurrent Neural Networks (RNN)
— notes for the Deep Learning book, Chapter 10 Sequence Modeling: Recurrent and Recursive Nets.Meta info: I’d like to thank the authors of the original book for their great work. For brevity, the转载 2017-11-01 16:08:53 · 1293 阅读 · 0 评论