知识图谱 / Knowledge Graph
Omni-Space
专注Android, Mobile Security and AI
展开
-
【译】Understanding Linked Data Formats
在本文中,我们将通过检查其四种最常见的格式来探索RDF的外观:N-Triples,Turtle,JSON-LD和RDF / XML。编辑(04/05/2019):我将本文扩展为包含JSON-LD并添加了下面的内容部分。 我原本没有包含JSON-LD,因为我从未真正使用它,但同意需要添加它才能完整。内容介绍格式看起来像什么?哪种格式适合我?结论TL; DR附录介绍很简单,链接数据...翻译 2019-05-28 18:32:41 · 488 阅读 · 0 评论 -
知识图谱实践篇(一):数据准备和本体建模
对知识图谱有兴趣的读者可以关注我的知乎专栏,主要介绍知识图谱的相关概念、技术,也包含一些具体实践。通过前面几篇文章的介绍,读者应该对知识图谱,其相关概念,以及语义网技术栈中的RDF,RDFS/OWL有了一定的了解。然而,之前我们都是在介绍一些概念性的东西。实践才出真知,理论掌握得再好,不能解决实际问题也只是纸上谈兵。因此,笔者准备开一个实践篇,结合理论篇,让读者能够从无到有构建一个领域知识图谱...转载 2019-05-05 15:56:09 · 7109 阅读 · 2 评论 -
一文揭秘!自底向上构建知识图谱全过程
阿里妹导读:知识图谱的构建技术主要有自顶向下和自底向上两种。其中自顶向下构建是指借助百科类网站等结构化数据源,从高质量数据中提取本体和模式信息,加入到知识库里。而自底向上构建,则是借助一定的技术手段,从公开采集的数据中提取出资源模式,选择其中置信度较高的信息,加入到知识库中。在本文中,笔者主要想分享一下自底向上构建知识图谱的全过程,抛砖引玉,欢迎大家交流。“The world is n...转载 2019-05-04 15:29:04 · 1195 阅读 · 0 评论 -
Playing Around With VirusTotal Graph
A few days ago, I bumped into a new post from folks from VirusTotal announcing the VirusTotal Graph, the tool not only caught my attention from who it was coming from, but also because the huge impact...转载 2019-03-05 16:38:25 · 305 阅读 · 0 评论 -
豆瓣图书的推荐与搜索、简易版知识引擎构建(neo4j)
DouBanRecommend基于豆瓣图书的推荐、知识图谱与知识引擎简单构建neo4j本项目主要贡献源来自豆瓣爬虫(数据源)lanbing510/DouBanSpider、知识图谱引擎Agriculture_KnowledgeGraph、apple.turicreate中内嵌的推荐算法。主要拿来做练习,数据来源可见lanbing510/DouBanSpider。练习内容:豆瓣图书推荐 ...转载 2019-02-14 01:12:18 · 1022 阅读 · 0 评论 -
IBM Watson Discovery Knowledge Graph
Last Updated: 2018-06-09Edit in GitHubKnowledge graphs go beyond just data and information by making connections within your data across documents and generating new knowledge. We provide the AI tec...转载 2019-01-15 14:53:23 · 1253 阅读 · 1 评论 -
知识图谱资料收集
第一届全国中文知识图谱研讨会第二届全国中文知识图谱研讨会第三届全国中文知识图谱研讨会全国知识图谱与语义计算大会(CCKS 2016)CCKS 2017-全国知识图谱与语义计算大会...原创 2018-06-01 09:12:58 · 1071 阅读 · 0 评论 -
从知识图谱到事理图谱 | CNCC 2017
雷锋网AI科技评论按:由中国计算机学会(CCF)主办,福州市人民政府、福州大学承办,福建师范大学、福建工程学院协办的 2017 中国计算机大会(CNCC 2017)于 10.26—10.28 日在福州•海峡国际会展中心举办。大会除了14场特邀报告,还有2场大会主题论坛、40余场学术论坛、30余场特色活动以及3个颁奖大会,同期还将有80余家企业举办科技成果展。雷锋网(公众号:雷锋网)作为独家战略合作...转载 2018-05-27 01:06:24 · 5961 阅读 · 0 评论 -
CIKM 2017 Tutorial: Construction and Querying of Large-scale Knowledge Bases
In today's computerized and information-based society, people are inundated with vast amounts of text data, ranging from news articles, social media post, scientific publications, to a wide range of t...转载 2018-05-15 15:07:19 · 598 阅读 · 0 评论 -
【译】KNOWLEDGE EXTRACTION FROM UNSTRUCTURED TEXTS
原文: https://blog.heuritech.com/2016/04/15/knowledge-extraction-from-unstructured-texts/前言从互联网上公开表达的人的信息中可以获得不合理的信息量。 在Heuritech,我们使用这些信息来更好地了解人们的需求,他们喜欢哪些产品以及为什么。 这篇文章从科学角度解释了什么是知识提取,并详细介绍了一些最新的方法。什么是...翻译 2018-05-15 15:04:35 · 648 阅读 · 0 评论 -
知识图谱实践篇(二):关系数据库到RDF
上一篇文章介绍了我们所使用的数据。其实,知识图谱数据的来源主要有三个:结构化数据、半结构化数据和非结构化的数据。我们所使用的电影数据就是结构化的数据。半结构化的数据指的是数据有一定的组织形式,但较结构化数据而言更松散(属性名和属性值具有多样性,比如“生日”就有“出生日期”、“诞辰”等多种表达方式),例如百度百科、维基百科、互动百科等;对infobox(下图红框)中的属性和属性值做一定处理后,我们就...转载 2019-05-05 16:00:57 · 2173 阅读 · 1 评论 -
知识图谱实践篇(四):Apache jena SPARQL endpoint及推理
在上一篇我们学习了如何利用D2RQ来开启endpoint服务,但它有两个缺点:1. 不支持直接将RDF数据通过endpoint发布到网络上。2. 不支持推理。这次我们介绍的Apache Jena能够解决上面两个问题。一、Apache Jena简介Apache Jena(后文简称Jena),是一个开源的Java语义网框架(open source Semantic Web F...转载 2019-05-05 16:04:55 · 1742 阅读 · 0 评论 -
Contextualizing Airbnb by Building Knowledge Graph
我想你去洛杉矶旅行。 第一步是访问A irbnb.com并搜索“洛杉矶”。在后端,查询“洛杉矶”被翻译成地图上的一个区块; 此块中的可用房屋将在许多搜索结果页面中返回。 这足以让你制定旅行计划吗?随着Airbnb逐渐走向成为端到端的旅行平台 ,我们越来越重要的是提供旅行见解,帮助人们决定何时旅行,去哪里以及旅行时 做些什么 。 例如,洛杉矶最受欢迎的地标和社区是什么? 是否有任何即将举行的音乐...翻译 2019-05-28 18:28:58 · 280 阅读 · 0 评论 -
【译】Deep Learning with Knowledge Graphs
上周,我在Connected Data London上就Octavian开发的方法发表了演讲,使用神经网络在知识图上执行任务。这是来自Connected Data London的演讲录音:在这篇文章中,我将总结那篇演讲(包括大部分幻灯片)并提供对我们影响最大的论文的链接。要了解有关构建下一代数据库查询引擎的新方法的更多信息, 请参阅我们最近的文章 。什么是图表?两个功...翻译 2019-05-28 18:26:28 · 609 阅读 · 0 评论 -
Tensorflow - Named Entity Recognition
Tensorflow - Named Entity RecognitionEach folder contains a standalone, short (~100 lines of Tensorflow), main.py that implements a neural-network based model for Named Entity Recognition (NER) usin...转载 2019-05-08 16:50:41 · 558 阅读 · 0 评论 -
用双向lstm+CRF做命名实体识别(附tensorflow代码)——NER系列(四)
这一篇文章,主要讲一下用深度学习(神经网络)的方法来做命名实体识别。现在最主流最有效的方法基本上就是lstm+CRF了。其中CRF部分,只是把转移矩阵加进来了而已,而其它特征的提取则是交由神经网络来完成。当然了,特征提取这一部分我们也可以使用CNN,或者加入一些attention机制。接下来,我将参考国外的一篇博客《Sequence Tagging with Tensorflow》,结合ten...转载 2019-05-08 15:00:38 · 6488 阅读 · 1 评论 -
用CRF做命名实体识别——NER系列(三)
在上一篇文章《用隐马尔可夫模型(HMM)做命名实体识别——NER系列(二)》中,我们使用HMM模型来做命名实体识别,将问题转化为统计概率问题,进行求解。显然,它的效果是非常有限的。在深度学习技术火起来之前,主流的、最有效的方法,就是CRF(条件随机场)模型。本文不对CRF模型进行展开讲解,而是结合我之前参加的CCF BDCI的其中一个赛题,直接用CRF++工具进行实战。下面直接进入正题。1...转载 2019-05-08 14:58:58 · 2409 阅读 · 0 评论 -
用隐马尔可夫模型(HMM)做命名实体识别——NER系列(二)
上一篇文章里《用规则做命名实体识别——NER系列(一)》,介绍了最简单的做命名实体识别的方法–规则。这一篇,我们循序渐进,继续介绍下一个模型——隐马尔可夫模型。隐马尔可夫模型,看上去,和序列标注问题是天然适配的,所以自然而然的,早期很多做命名实体识别和词性标注的算法,都采用了这个模型。这篇文章我将基于码农场的这篇文章《层叠HMM-Viterbi角色标注模型下的机构名识别》,来做解读。但原文...转载 2019-05-08 14:56:56 · 8143 阅读 · 2 评论 -
小型动漫知识图谱的构建 (Python+Neo4j) (纯实践内容,基于bilibili所有正版番剧的动漫、声优、角色、类型)
数据源:bilibili所有番剧的详情页面的信息,共计3000+的番剧(已经整理好的数据和代码下文有链接)步骤1:抽取信息从各个详情页面中抽取信息,比如动漫这个节点的文件,大概内容如下这一步稍微有些麻烦的地方就是爬虫的时候数据可能会出现清理不干净的情况,比如某个name的前面或者后面有空格、换行符等奇怪的字符,会对后面建立relation的表产生很多麻烦,注意数据要清理干净。...转载 2019-05-05 16:49:35 · 1320 阅读 · 0 评论 -
知识图谱实践篇(五):KBQA Demo
作为实践篇的最后一篇,我们将介绍如何用Python完成一个简易的问答程序。下图是demo的展示效果:查询结果为空,回答“I don't know.”;不能理解问句,回答“I can't understand.”。本实现参考了王昊奋老师发布在OpenKG上的demo“基于REfO的KBQA实现及示例”,读者也可以参考此示例,来完成本demo。下面谈谈本demo的流程。一、基本流程此d...转载 2019-05-05 16:29:49 · 966 阅读 · 0 评论 -
【译】Build Knowledge Graph from unstructured corpus using Machine Learning
从非结构化数据创建知识图的问题是众所周知的机器学习问题。 甚至没有一个组织为完全丰富的知识图达到100%的准确率。 我没有什么发现可以帮助一个新手入门。在转向调查结果之前,我会让你从非结构化语料库中解读构建知识图的问题。 让我们考虑这种情况。 假设我们有非常小的语料库:“苹果公司由史蒂夫乔布斯创立,现任首席执行官是蒂姆库克,苹果公司推出了多款产品,如Ipad,iphone,MAC等。”语料库也可能...翻译 2018-05-15 15:02:02 · 420 阅读 · 0 评论 -
Mining Knowledge Graphs from Text 教程: 如何从文本中挖掘知识图谱
Mining Knowledge Graphs from TextWSDM 2018 Tutorial (schedule)February 5, 2018, 1:30PM - 5:00PMLocation: Ballroom Terrace (The Ritz-Carlton, Marina del Rey) Jay Pujara, Sameer SinghKnowledge graphs ha...转载 2018-05-15 14:59:30 · 1961 阅读 · 0 评论 -
【译】 Google: Still in The Search 搜索巨人Google的伟大转变 (四)
在招募最佳AI人才的比赛中,谷歌通过让一个前电子游戏大师和国际象棋神童领导的团队获得了一场政变 从2011年开始,德米斯哈萨比斯共同创立了DeepMind-由英国人工智能创业公司Elon Musk等资助,成为主要科技公司最令人垂涎的目标。 2014年6月,Hassabis及其联合创始人Shane Legg和Mustafa Suleyman同意谷歌以4亿美元的购买价格。 去年年底,Hassa...翻译 2018-05-15 05:44:23 · 530 阅读 · 0 评论 -
肖仰华:知识图谱与认知智能
今天跟大家分享的主题是《知识图谱与认知智能》。 知识图谱自2012年提出至今,发展迅速,如今已经成为人工智能领域的热门问题之一,吸引了来自学术界和工业界的广泛关注,在一系列实际应用中取得了较好的落地效果,产生了巨大的社会与经济效益。那么到底是什么在支撑着知识图谱技术的繁荣景象?是一股什么力量让知识图谱技术吸引了如此多的关注?换句话说,知识图谱到底能解决什么问题?何以能够解决这些问题?今...转载 2018-05-11 06:36:39 · 6664 阅读 · 1 评论 -
CCKS-2017 行业知识图谱构建与应用-下篇
上篇文章推出之后,大家反应非常热烈,因此给了我们更大的动力将下篇加紧赶出来。这篇是PPT的下半部分,更加偏重于实战中关键技术的难点剖析,以及我们在PlantData平台实践中相应的解决方案描述。如果你曾有听完一场介绍知识图谱应用的讲座,感觉讲的很有道理,但仍有各种疑惑的情况,比如“他们用什么工具来构建知识图谱的?”,“为什么不选择XXX?”,“他们的可视化做的好漂亮,我该怎么做才能达到这样的效果?...转载 2018-05-11 06:36:42 · 1926 阅读 · 1 评论 -
CCKS-2017行业知识图谱构建与应用-上篇
许久未更新,感谢各位仍然关注PlantData知识图谱实战的朋友,在过去的两个月时间粉丝数一直在不断增长,并且公众号也开通了留言功能。 为了回馈各位的厚爱,特奉献上这篇摘录自CCKS-2017(成都),王昊奋、胡芳槐演讲PPT《行业知识图谱构建与应用》的文章。这篇同样是干货满满,毫不夸张的说应该是行业知识图谱实战领域目前看到的最有价值的PPT。话不多说,我们一起来看下PPT中的内容。本次Tutor...转载 2018-05-11 06:36:46 · 2854 阅读 · 0 评论 -
揭开知识库问答KB-QA的面纱4·向量建模篇
内容速览向量建模的核心思想如何用分布式表达表示答案和问题如何训练分布式表达论文实验与总结本期我们将介绍KB-QA传统方法之一的向量建模(Vector Modeling),我们以一个该方法的经典代表作为例,为大家进一步揭开知识库问答的面纱。该方法来自Facebook公司Bordes A, Chopra S, Weston J的论文 Question answering with subgraph e...转载 2018-05-11 06:36:50 · 1470 阅读 · 0 评论 -
揭开知识库问答KB-QA的面纱3·信息抽取篇
内容速览你是如何通过知识库回答问题的如何确定候选答案如何对问题进行信息抽取如何筛选候选答案论文实验与总结本期我们将介绍KB-QA传统方法之一的信息抽取(Information Extraction),我们以一个该方法的经典代表作为例,为大家进一步揭开知识库问答的面纱。该方法来自约翰·霍普金斯大学Yao X, Van Durme B.的 Information Extraction over Str...转载 2018-05-11 06:36:53 · 1603 阅读 · 0 评论 -
揭开知识库问答KB-QA的面纱2·语义解析篇
内容速览什么是语义解析(Semantic Parsing)什么是逻辑形式(Logic Form)语义解析KB-QA的方法框架实验结果本期我们从传统方法之一的语义解析(有时也被称为语义分析)开始,以一个经典的语义解析baseline方法为例,介绍语义解析如何进行KB-QA。该方法来自斯坦福Berant J, Chou A, Frostig R, et al. 的Semantic Parsing on...转载 2018-05-11 06:36:57 · 2987 阅读 · 0 评论 -
揭开知识库问答KB-QA的面纱1·简介篇
内容速览什么是知识库(knowledge base, KB)什么是知识库问答(knowledge base question answering, KB-QA)知识库问答的主流方法知识库问答的数据集什么是知识库“奥巴马出生在火奴鲁鲁。”“姚明是中国人。”“谢霆锋的爸爸是谢贤。”这些就是一条条知识,而把大量的知识汇聚起来就成为了知识库。我们可以在wiki百科,百度百科等百科全书查阅到大量的知识。然而...转载 2018-05-10 14:33:45 · 6932 阅读 · 0 评论 -
从 6 篇顶会论文看「知识图谱」领域最新研究进展 | 解读 & 代码
ISWC 2018■ 链接 | http://www.paperweekly.site/papers/1912■ 源码 | https://github.com/quyingqi/kbqa-ar-smcnn■ 解读 | 吴桐桐,东南大学博士生,研究方向为自然语言问答概述随着近年来知识库的快速发展,基于知识库的问答系统(KBQA )吸引了业界的广泛关注。该类问答系统秉承先编码再比较的设计思路,即先将...转载 2018-05-10 14:29:07 · 1220 阅读 · 0 评论 -
项目实战:如何构建知识图谱
实践了下怎么建一个简单的知识图谱,两个版本,一个从 0 开始(start from scratch),一个在 CN-DBpedia 基础上补充,把 MySQL,PostgreSQL,Neo4j 数据库都尝试了下。自己跌跌撞撞摸索可能踩坑了都不知道,欢迎讨论。CN-DBpedia 构建流程知识库可以分为两种类型,一种是以 Freebase,Yago2 为代表的 Curated KBs,主要从维基百科...转载 2018-05-10 14:26:15 · 30883 阅读 · 4 评论 -
请问知识图谱有哪些研究点是可以进行深入研究的?
漆桂林东南大学 计算机软件与理论教授收录于编辑推荐 · 130 人赞同了该回答知识图谱这两年研究很火,因为在业界和政府部门都取得了很好的应用,不过大部分的工作还是集中在NLP,还有很多问题没有得到解决。我觉得2018年以后,信息抽取虽然还会是知识图谱的一个比较重要的研究方向,知识图谱作为知识工程的一个分支将有更多的问题需要去解决,特别是知识图谱要实用化将面临很多挑战。以下方向值得研究:1.信息抽取...转载 2018-05-11 06:36:35 · 3965 阅读 · 0 评论 -
kegra:用Keras深度学习知识图
你好。 我在过去的文章中提到我正在为企业数据集进行认知计算。 就是这样。本文将需要深入学习的一些理解,但您应该能够遵循对数据科学的最小理解。我一直致力于在GPU上深入学习的图形中检测模式。 Thomas Kipf 编写了一个用 Keras对图形节点进行分类的好库 。 本文基于他的作品“ 图形卷积网络的半监督分类 ”。 我们来看一下。首先,图表是什么?那么,我关心我工作中的知识图。 这些图表代表像“...翻译 2018-05-11 06:36:31 · 2584 阅读 · 1 评论 -
【译】 Google: Still in The Search 搜索巨人Google的伟大转变 (三)
“我需要了解一下你的背景,”杰弗里辛顿说。 “你有科学学位吗?” 在加拿大山景城,谷歌是他于2013年作为杰出研究员加入的公司,他是加利福尼亚州山景城的一个白板,他是一位健壮,干涩的英国人。 Hinton也许是世界上神经网络系统的首要专家,他是20世纪80年代中期帮助开拓者的人工智能技术。 (他曾说自从他十六岁起就一直在思考神经网络问题)。从那时起的大部分时间里,神经网络 - 大致模拟人类...翻译 2018-05-15 05:42:07 · 699 阅读 · 0 评论 -
【译】 Google: Still in The Search 搜索巨人Google的伟大转变 (二)
Google每天八次向测试对象询问他们的信息需求。 他们的回复可以让人清醒。 谷歌搜索真的没有受到来自其他搜索引擎竞争的威胁。 但搜索团队中的人们经常担心他们可能在满足用户需求方面不足。 当然,要解决这个问题,Google需要知道这些需求是什么。 一种方法是通过检查日志来查看哪些查询不满意。 但有很多人想知道他们并不是在问Google。 Google如何知道这些需求是什么? 它问他们。 ...翻译 2018-05-15 05:39:23 · 331 阅读 · 0 评论 -
【译】 Google: Still in The Search 搜索巨人Google的伟大转变 (一)
Google的旗舰产品长期以来一直是我们生活的一部分,我们认为这是理所当然的。 但谷歌没有。 搜索的安静转型研究的第一部分。 为什么天空是蓝色的? 孩子们经常会问这个问题,很少有家长能够独立提供答案。 不久之前,找到正确的答案至少应该是潜入百科全书,甚至可能是去图书馆旅行。 近年来,妈妈和爸爸只是简单地冲上电脑,打开谷歌,评估为回应问题而提出的链接,迅速阅读解释并解析它,以便他们的地毯老鼠能够...翻译 2018-05-15 05:36:53 · 843 阅读 · 0 评论 -
大规模知识图谱的构建、推理及应用
随着大数据的应用越来越广泛,人工智能也终于在几番沉浮后再次焕发出了活力。除了理论基础层面的发展以外,本轮发展最为瞩目的是大数据基础设施、存储和计算能力增长所带来的前所未有的数据红利。 人工智能的进展突出体现在以知识图谱为代表的知识工程以及以深度学习为代表的机器学习等相关领域。未来伴随着深度学习对于大数据的红利消耗殆尽,如果基础理论方面没有新的突破,深度学习模型效果的天花板将日益迫近。而另一方面,大...转载 2018-05-19 09:40:34 · 2665 阅读 · 0 评论 -
知识图谱的应用
导读知识图谱 (Knowledge Graph) 是当前的研究热点。自从2012年Google推出自己第一版知识图谱以来,它在学术界和工业界掀起了一股热潮。各大互联网企业在之后的短短一年内纷纷推出了自己的知识图谱产品以作为回应。比如在国内,互联网巨头百度和搜狗分别推出”知心“和”知立方”来改进其搜索质量。那么与这些传统的互联网公司相比,对处于当今风口浪尖上的行业 - 互联网金融, 知识图谱可以有哪...转载 2018-05-19 09:36:35 · 876 阅读 · 0 评论 -
Hadoop将死,图数据库成为新趋势!
科技行业向来是以技术发展速度快著称,时值岁末,我们和多位数据库领域的业内大佬进行了深度交流,分享了他们眼中2017年的小惊喜和2018年的大展望。Endpoint Systems创始人Lucas Vogel2017年:最大的惊喜应该是Oracle Autonomous Database Cloud,其次,是Google Cloud Spanner,Google全球可用分布式关系数据库平台,第三是M...转载 2018-05-13 14:11:08 · 4609 阅读 · 0 评论