Natural Language Processing (NLP)
Omni-Space
专注Android, Mobile Security and AI
展开
-
The major advancements in Deep Learning in 2016
Deep Learning has been the core topic in the Machine Learning community the last couple of years and 2016 was not the exception. In this article, we will go through the advancements we think have co转载 2017-02-04 10:12:30 · 801 阅读 · 0 评论 -
记录一次与大神们的关于GAN应用于NLP的讨论
说实话,是聆听了大神们,本人只是捧哏似的嗯、啊了几句。之前paperweekly的GAN讨论组要进行一次讨论,给出了很多议题进行投票。里边有GAN in NLP、GAN and RL、半监督GAN等我比较感兴趣的话题。也有图像相关的关于GAN的正统问题。没想到最后GAN in NLP获得了最多的票数。我原来对于把GAN应用于NLP叫做剑走偏锋,没想到志同道合的人这么多…接下转载 2018-01-16 09:56:52 · 420 阅读 · 0 评论 -
Deep Learning for Chatbots, Part 2 – Implementing a Retrieval-Based Model in Tensorflow
Retrieval-Based botsIn this post we’ll implement a retrieval-based bot. Retrieval-based models have a repository of pre-defined responses they can use, which is unlike generative models that can g转载 2017-10-01 15:04:01 · 895 阅读 · 0 评论 -
Deep Learning for Chatbots, Part 1 – Introduction
Chatbots, also called Conversational Agents or Dialog Systems, are a hot topic. Microsoft is making big bets on chatbots, and so are companies like Facebook (M), Apple (Siri), Google, WeChat, and Sl转载 2017-10-01 15:00:43 · 551 阅读 · 0 评论 -
tf13: 简单聊天机器人
现在很多卖货公司都使用聊天机器人充当客服人员,许多科技巨头也纷纷推出各自的聊天助手,如苹果Siri、Google Now、Amazon Alexa、微软小冰等等。前不久有一个视频比较了Google Now和Siri哪个更智能,貌似Google Now更智能。本帖使用TensorFlow制作一个简单的聊天机器人。这个聊天机器人使用中文对话数据集进行训练(使用什么数据集训练决定了对话类型)转载 2017-10-08 14:00:41 · 1102 阅读 · 0 评论 -
如何用TensorFlow训练聊天机器人(附github)
前言实际工程中很少有直接用深度学习实现端对端的聊天机器人,但这里我们来看看怎么用深度学习的seq2seq模型来实现一个简易的聊天机器人。这篇文章将尝试使用TensorFlow来训练一个基于seq2seq的聊天机器人,实现根据语料库的训练让机器人回答问题。seq2seq关于seq2seq的机制原理可看之前的文章《深度学习的seq2seq模型》。循环神经网络在s转载 2017-10-08 13:42:19 · 1954 阅读 · 0 评论 -
谈谈谷歌word2vec的原理
word2vec在NLP领域中,为了能表示人类的语言符号,一般会把这些符号转成一种数学向量形式以方便处理,我们把语言单词嵌入到向量空间中就叫词嵌入(word embedding)。谷歌开源的word2vec则是这么一种词嵌入工具,它能生成词向量,通过词向量可以很好地度量词与词之间的相似性。word2vec采用的模型包含了连续词袋模型(CBOW)和Skip-Gram模型。通过它可以在大数据量转载 2017-10-08 13:40:51 · 4318 阅读 · 1 评论 -
LSTM(Long Short Term Memory)和RNN(Recurrent)教程收集 (知乎)
作者:知乎用户链接:https://www.zhihu.com/question/29411132/answer/51515231来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。刚好毕设相关,论文写完顺手就答了先给出一个最快的了解+上手的教程:直接看theano官网的LSTM教程+代码:LSTM Networks for Sen转载 2017-09-20 12:52:49 · 13334 阅读 · 1 评论 -
LSTM简介以及数学推导(FULL BPTT)
前段时间看了一些关于LSTM方面的论文,一直准备记录一下学习过程的,因为其他事儿,一直拖到了现在,记忆又快模糊了。现在赶紧补上,本文的组织安排是这样的:先介绍rnn的BPTT所存在的问题,然后介绍最初的LSTM结构,在介绍加了遗忘控制门的,然后是加了peephole connections结构的LSTM,都是按照真实提出的时间顺序来写的。本文相当于把各个论文核心部分简要汇集一下而做的笔记,已提供快转载 2017-09-20 12:44:55 · 1564 阅读 · 0 评论 -
记录一次与大神们的关于GAN应用于NLP的讨论 (后续)
这次的讨论可能是因为题目不够大众,或者是做这方面的同学们太过羞涩,因此讨论的内容基本偏题,最后形成了大家自由讨论的局面。但是只要仔细观察,是可以看到其中是有着耀眼的闪光点的,至少对于我来说是这样的。重申以下观点:下边的讨论问题与解答有些是文不对题的,首先是因为按照发言顺序整理,难免有插话的存在;第二,因为在讨论中大家的关注点比较集中,很多问题的讨论最后都会归纳到几个矛盾点上;还有就是有些内容转载 2018-01-16 09:58:18 · 931 阅读 · 0 评论