内容简介:
此文是Matthew D. Zeiler在2014年发表在ECCV上的文章,当时基于CNN 的模型已经初露峥嵘,表现不俗,但探究不深,对于CNN为何取得如此好的效果以及如何改进网络结构没有明确的答案,这也正是该文重点研究分析的两个问题。作者通过反卷积手段实现可视化,通过可视化来分析每层的特征以及特征如何随模型训练而发生变化等,从而更好地改进模型结构。
文章内容:
反卷积实现可视化:
作者以标准的有监督的cnn模型为基础,在每个卷积层后面附加了一个反卷积层,反卷积层可以看成是卷积层的逆过程,同样包含有卷积核以及pooling函数(或者说是逆函数),反卷积层的作用就是将输出特征重新映射为输入信号。这个过程,主要包含三个操作:1、unpooling ;2、矫正;3、反卷积。
unpooling:
在卷积过程中,pooling操作是不可逆的,但这里采用了一种近似的手段,通过记录每个pooling区域最大值的位置信息,将最大值回填,其余位置补充为0近似的重构。
矫正:
这个过程就是使用激活函数的逆过程,正向计算中采用relu函数保证了非负性,这个约束在反过程中依然有效,所以这里也是直接采用relu函数。
反卷积:
浅谈《Visualizing and Understanding Convolutional Networks》
最新推荐文章于 2021-10-26 20:48:05 发布