- 博客(94)
- 收藏
- 关注
原创 在一台Linux虚拟机上挂载另一台Windows虚拟机的磁盘
在开发中想要直接在linux虚拟机下访问windows虚拟机磁盘下的内容,以方便操作windows下的文件。
2023-01-05 11:27:43 1092 1
原创 Springboot中多模块依赖问题
我在使用IDEA进行多模块开发的时候,需要加入其他模块实现的功能作为依赖。一开始我是如下的结构:模块1 子模块1 ... pom.xml 子模块2 ... pom.xml pom.xml模块2 ... pom.xml当我的模块2想要引用子模块1中的功能时,正常的操作是在模块2的pom文件中加入子模块1作为依赖,同时使用@ComponentScan()将子模块1中的配置引入到当前项目中
2021-11-26 12:10:46 3296
原创 vue-admin-template-master安装问题
一开始使用的是谷粒学院老师提供的vue模板安装包,但是一直安装失败,部分依赖无法安装。最后从官方地址https://github.com/PanJiaChen/vue-admin-templatehttps://github.com/PanJiaChen/vue-admin-template下载了最新版本,然后运行 :npm install最后得以安装成功!!!且通过如下命令能正确打开登录页面:npm run dev...
2021-11-24 00:04:00 1973
原创 Ubtuntu 16.04下安装matlab(R2019b) for python API心路历程
不同 的Matlab版本支持的python版本是不一样的,就2019b来说,其支持2.7,3.6,3.7,这个信息可以在matlabroot/extern/engines/python下的setup.py中看到。如下图所示:安装过程1、首先找到你所安装的Matlab路径:sudo find / -name MATLAB比如:/usr/local/MATLAB/R2019b2、然后输入下面命令,进入Python文件夹:cd matlabroot/extern/engines/python比
2020-12-18 19:54:11 363 2
原创 PIRM2018,计算PI指标的代码调试过程
首先代码地址:Perceptual Index代码目录结构:然后按照README的quick start去操作,如下:注意HR和SR的图像名称要一一对应,否则程序会报找不到文件的错误。执行上图中的操作4时,可能会出现无法执行,并报错的问题,对应的解决方案如下:如果按照上述步骤操作后,无法找到生成的MEX文件的话,建议直接下载使用预编译好的MEX文件,然后放到上图所提示的目录下即可。(本人就是这样做的,因为没有找到生成的MEX文件)以上步骤完成后,就可以征程执行了PI计算了。...
2020-12-17 20:03:36 2345 1
转载 自己动手实现卷积操作(Pytorch)
参考文章:https://blog.csdn.net/yutingzhaomeng/article/details/108883152其中也有自己的一些理解。某些时候可能需要用到类似卷积操作滑动窗的思想,实现一些操作。具体实现如下,首先导入必要的包import torchimport numpy as npimport torch.nn as nn方便起见(同时为了验证方法正确性),构建简单的卷积输入input = torch.from_numpy(np.array([1,2,3,4,5,
2020-12-14 16:43:08 3257 1
原创 Deep Blind Video Super-resolution
好像中了CVPR 2020???没有查到代码:https://github.com/jspan/blindvsr文章思路所谓盲超分:我的理解是目前大部分的图像和视频超分辨算法,他们所使用的退化模型都是已知的,比如Bicubic核,高斯模糊核。在我们使用CNN去建模时,CNN在超分过程中并不会对模糊核进行建模,因为它是已知的,这样导致的问题就是最后产生的超分结果很平滑,看上去就会显得比较模糊。(这个地方的疑惑是为什么已知了,CNN就不对其建模了?这个地方有大佬有更深入的理解,还望告诉在下,)所以盲.
2020-11-26 18:02:01 1503 1
原创 MuCAN: Multi-Correspondence Aggregation Network for Video Super-Resolution阅读
出自ECCV2020文章思路这篇文章的出发点是:帧间和帧内中存在很多相似的内容,如何有效的利用这些内容上的相似性去超分目标帧。这种相似性如下图所示:基于此,作者提出了一个temporal multi-correspondence aggregation module(TM-CAM)以利用帧间内容上的相似性, cross-scalenonlocal-correspondence aggregation module(CN-CAM)以利用帧内内容上的相似行。整个算法的框架如下图所示:整个算法由.
2020-11-26 10:24:35 726
原创 Video Super-Resolution with Recurrent Structure-Detail Network阅读
代码:https://github.com/junpan19/RSDN文章出自ECCV 2020,与CVPR 2020 VSR-TGA出自同一个作者团队.文章思路这篇文章的创新点在于将一帧图像分为了Structure和Detail两部分,其中,Structure部分包含低频信息,而Detail部分包含高频信息,最后两者分别进行处理。算法的整体框架如下图:从上图可以看到这是一种类似循环网络的处理方式,但实际结构中并没有用到循环结构,它的思路和FRVSR这篇文章类似,即是用前一时刻的处理结果作为后.
2020-11-25 21:26:55 868 2
原创 Space-Time-Aware Multi-Resolution Video Enhancement阅读总结
代码:https://github.com/alterzero/STARnet】这是CVPR2020上发表的同时执行插帧和超分辨任务的文章。文章思路实验结果
2020-11-25 11:43:00 1172
原创 Lightweight Single-Image Super-Resolution Network with Attentive Auxiliary Feature Learning
代码链接:https://github.com/wxxxxxxh/A2F-SR算法思路这篇文章是发表在ACCV 2020 上的一篇轻量化超分文章,算法的思想很简单,主要提出了一个注意力辅助特征学习模块(Attentive Auxiliary Feature module )。对于这个模块,一方面接收之前所有模块的输出,然后通过一个1*1卷积,将这些输出映射到同一个空间中,接着通过一个通道注意力模块,滤除冗余的信息,另一方面,仅对上一层的输出进行残差学习,最后这两部分的输出加起来得到当前注意力辅助特征学
2020-11-24 22:53:40 916
原创 一些AI竞赛网站
一、FlyAI:https://www.flyai.com/二、阿里天池:https://tianchi.aliyun.com/competition/entrance/231762/introduction三、Kaggle:https://www.kaggle.com
2020-11-23 21:31:53 540
原创 一个涵盖主流光流算法的网站
一个涵盖主流光流算法的网站:http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=flow
2020-11-23 21:25:18 265
原创 一些学术科研可能会用到的网站,归纳一下
一、http://publication-recommender.ieee.org/pubsearch这个网站可以查询和自己研究领域相关的期刊会议信息。二、电气和电子工程师协会(IEEE,全称是Institute of Electrical and Electronics Engineers)是一个美国的电子技术与信息科学工程师的协会,在电子电气方面的认可度比较高,国内许多高校都比较青睐该协会的组织刊物,其主要分为类别 出版周期 IEEE Transactions 学
2020-11-23 21:16:16 222
转载 Pytorch中保存图片的方式
1、tensor直接保存#!/usr/bin/env python# _*_ coding:utf-8 _*_import torchfrom torchvision import utils as vutils def save_image_tensor(input_tensor: torch.Tensor, filename): """ 将tensor保存为图片 :param input_tensor: 要保存的tensor :param filena
2020-11-23 19:37:33 11361 4
原创 VSR_TGA:Video Super-resolution with Temporal Group Attention阅读
这是CVPR2020的一篇视频超分辨文章,由清华和华为公司联合完成。代码链接:https://github.com/junpan19/VSR_TGA**文章思路**文章主要特点是提出一个分组分层提取时间信息的策略。具体的实现过程:1)首先讲=将输入的视频帧根据到目标帧的距离远近,分为不同的组别,比如七帧的输入[1,2,3,4,5,6,7],分组后的结果是[1,4,7],[2,4,6],[3,4,5],每一组中都含有目标帧,这是必须的,不然无法指导目标帧有效的超分。(这种分组效果相当于产生了不.
2020-11-23 17:41:13 790
转载 基于空间金字塔池化的卷积神经网络目标检测
转载文章:http://blog.csdn.net/hjimce/article/details/50187655作者:hjimce一、相关理论 本篇博文主要讲解大神何凯明2014年的paper:《Spatial Pyramid Pooling in Deep ConvolutionalNetworks for Visual Recognition》,这篇paper主要的创新点在于提出了空间金字塔池化。paper主页:http://research.microsoft.com/en-us/u...
2020-11-23 15:34:31 360
原创 Understanding Deformable Alignment in Video Super-Resolution理解
这是今年董超老师团队当前挂在arxiv上的一篇很有深度的文章,深入分析了在视频超分辨中,基于光流的对齐方式与可变形卷积的对齐方式之间的联系与区别。本人目前阅读了这篇文章,在这里写下自己的浅薄理解,后面有未理解清楚的地方或者有新的理解时再补充,同时欢迎大家指正留言。注:个人估计这篇文章还只是初稿,因为个人觉得有的地方还不是讲的很清楚,比如讲offset保真损失的时候,符号指代不是很明确,交代不够清楚。研究目标这篇文章的目的是理清可变形卷积应用于帧间对齐的本质,并分析它与基于光流的对齐方式的区别与联系,以
2020-11-13 22:41:14 1907 3
转载 图像处理中的振铃现象产生原因
图像处理中,对一幅图像进行滤波处理,如果选用的频域滤波器具有陡峭的变化,则会使滤波图像产生“振铃现象”。如下图:振铃现象产生的本质原因是:对于辛格函数sinc而言,经过傅里叶变换之后的函数形式为窗函数(理想低通滤波器)形式,用图像表示如下:图1.左边为矩形窗函数,右边为辛格函数因此凡具有接近窗函数的滤波器,IFT之后,其空域函数形式多少接近sinc函数。sinc是进行图像滤波的主要因素,两边的余波将对图像产生振铃现象。下面给出三个常用的低通滤波器:理想型、巴特沃斯型、高斯型。并分
2020-09-15 20:54:47 14877 2
转载 Pycharm的scientific model运行模式
PyCharm 在2017.3版本之后加入了Scientific Mode,在科学计算时,可以方便的追踪变量变化等。1、有时打开了scientific mode时,但文件中引入了numpy 等科学计算包时并没有被自动识别,以scientific mode运行。需要在run方法中手动设置一下。具体步骤:Settings –> Tools –> Python Scientific > Show plots in tool window 勾选View 勾选 Scientific Mod
2020-07-07 19:14:41 2771
原创 基于深度学习的图像边缘和轮廓提取方法介绍
附原文链接:https://blog.csdn.net/weixin_38754361/article/details/100059562
2020-05-13 15:53:52 1797
原创 Logistic回归通俗简单的理解
参考文章:https://www.jianshu.com/p/4cf34bf158a1https://www.jianshu.com/p/e817b2bcab63
2020-05-13 11:36:32 527
原创 显卡驱动与cuda对应关系,cudnn与cuda之间的关系
1、可以从下面网址中查询显卡驱动与Cuda版本之间的对应关系:https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html下图是上面网站中查询的结果:2、cuda与cudnn版本之间的对应关系可从下面网站得知:https://developer.nvidia.com/rdp/cudnn-archive#a-...
2020-05-02 22:37:51 4975
原创 解决远程screen后,conda虚拟环境中的包丢了(如,torch,tensorflow)
1、在进入screen之前不要激活虚拟环境,待进入screen后再激活所需的虚拟环境,然后使用pip list发现所安装的环境依然还在。2、出现如下错误时:ImportError: libcudart.so.10.0: cannot open shared object file...解决方式:sudo ldconfig /usr/local/cuda-10.0/lib64这个问题是...
2020-04-17 00:41:06 1709 1
原创 Pytorch实战(一)
学习记录一下torchvision.transforms.ToTensor对于一个图片img,调用ToTensor转化成张量的形式,发生的不是将图片的RGB三维信道矩阵变成tensor图片在内存中以bytes的形式存储,转化过程的步骤是:img.tobytes()将图片转化成内存中的存储格式 torch.BytesStorage.frombuffer(img.tobytes(...
2020-04-10 10:03:52 710 1
转载 常见的 360° 全景视频格式介绍及播放方式
1、格式 油管目前提供 2种 360°视频格式:等距柱状投影格式(Equirectangular)和等角度立方体贴图格式(Equi-Angular Cubemap)。 由于阿满的视频四周区别不大,这里会使用其他视频截图进行演示。 所谓“等距柱状投影”也就是最常见的世界地图的投影方式,做法是将经线和纬线等距地(或有疏密地)投影到一个矩形平面上,这里借用谷歌博客上的图和注释。图1 根据...
2020-04-04 20:34:28 7702 1
原创 Transformer学习记录
Google 2017年的论文 Attention is all you need 阐释了什么叫做大道至简!该论文提出了Transformer模型,完全基于Attention mechanism,抛弃了传统的RNN和CNN。我们根据论文的结构图,一步一步使用 PyTorch 实现这个Transformer模型。Transformer架构首先看一下transformer的结构图:...
2020-04-04 18:08:32 168
转载 一键提升多媒体内容质量:漫谈图像超分辨率技术
看的一篇图像超分辨推文,在这里记录一下,方便后续查阅。作为将模糊的图像变清晰的神奇技术,图像超分辨率技术在游戏、电影、相机、医疗影像等多个领域都有广泛的应用。在这篇文章中,微软亚洲研究院的研究员们为你总结了图像超分辨率问题中的主流方法、现存问题与解决方案。微软亚洲研究院在图像超分辨率领域的相关技术也已在顶级会议发表,并转化入 PowerPoint 产品中,我们将在后续文章中为大家解读。近年...
2020-04-04 18:04:14 734
原创 GAN学习指南(通俗易懂):从原理入门到制作生成Demo
本文主要分为三个部分: 介绍原始的GAN的原理 同样非常重要的DCGAN的原理 如何在Tensorflow跑DCGAN的代码,生成如题图所示的动漫头像,附送数据集哦 ???? 一、GAN原理介绍说到GAN第一篇要看的paper当然是Ian Goodfellow大牛的Generative Adversarial Networks(arxiv:https://arxiv.o...
2020-03-30 17:23:06 1411
原创 pytorch中model.train、model.eval以及torch.no_grad的用法
1、model.train()model.train() 让model变成训练模式,此时 dropout和batch normalization的操作在训练起到防止网络过拟合的问题2、model.eval()model.eval(),pytorch会自动把BN和DropOut固定住,而用训练好的值。不然的话,一旦test的batch_size过小,很容易就会被BN层导致所生成图片颜色失...
2020-03-30 15:50:07 3702 2
原创 在Linux下安装.iso类型格式的Matlab软件以及zip格式的matlab文件
在Ubuntu16.04上用终端安装学校的正版matlab,依次输入如下命令:mkdir matlab创建临时文件夹matla sudo mount -t auto -o loop Download/R2019a.iso matlab/挂载Downloade文件夹下的安装镜像R2019a.iso到创建的matlab文件夹下即可。 sudo ./matlab/install执行安装文件...
2020-03-24 23:09:04 3290
转载 超分辨中为什么不用BN层?
BNBatch Norm可谓深度学习中非常重要的技术,不仅可以使训练更深的网络变容易,加速收敛,还有一定正则化的效果,可以防止模型过拟合。在很多基于CNN的分类任务中,被大量使用。但在图像超分辨率和图像生成方面,Batch Norm的表现并不好,加入了Batch Norm,反而使得训练速度缓慢,不稳定,甚至最后发散。以图像超分辨率来说,网络输出的图像在色彩、对比度、亮度上要求和输入一致...
2020-03-14 14:24:29 4622
原创 卷积神经网络为什么具有平移不变性?
概述在读计算机视觉的相关论文时,经常会看到平移不变性这个词,本文将介绍卷积神经网络中的平移不变性是什么,以及为什么具有平移不变性。什么是平移不变性?不变性不变性意味着即使目标的外观发生了某种变化,但是你依然可以把它识别出来。这对图像分类来说是一种很好的特性,因为我们希望图像中目标无论是被平移,被旋转,还是被缩放,甚至是不同的光照条件、视角,都可以被成功地识别出来。所以上面的...
2020-03-02 11:13:56 4609
转载 VR视频不清晰原因
视频不清晰几乎是VR用户反馈最多的问题,可是全景视频制作团队明明提供的都是4K超高清视频,为什么还要接受那么多的吐槽,内容小伙伴感觉很糟心。如果可以的话,内容团队为什么不提供更好分辨率,更高清晰度的视频呢,原因也是多方面的。此4K非彼4K其实全景视频的4K跟普通的4K不是一个概念,4K代表视频图像的分辨率是3840×2160。4K电视播放4K视频的时候就是把3840×2160个像素点在屏幕上面显...
2020-02-20 16:47:24 4658
原创 frp为服务器配置穿透,实现远程访问内网服务器
由于之前远程连接服务器时只能在同一个网络下(局域网)访问,当离开这个网络区域时,要想远程连接则无法实现。本文正是要解决这样一个问题,实现外网远程访问内网服务器的目的。1、首先需要租用一个服务器可以选用阿里云,百度云,腾讯云等,学生租用的话会比较便宜,之前有个同学租用了一个月的阿里云服务器,资费是10/月。2、下载frp,这是一个配置远程访问的脚本文件(不论外网内网都可以通过这个脚本实现...
2020-02-04 12:10:19 816
原创 服务器上安装Ubuntu 16.04系统
本文总结的安装过程在持续更新完善中......1、首先是制作U盘系统启动盘提前准备好制作软件:UltraISO(在本人的网盘中备份有)参考链接:https://jingyan.baidu.com/article/154b46311befea28ca8f41ae.html2、开始装系统1)将U盘插入服务器。2)重启电脑,选择U盘启动(按ESC键进入,不同的服务器可能不同)(类...
2020-02-04 11:23:50 3805 3
原创 texlive和texstudio安装教程
说明:这里使用texstudio作为latex编辑器,texlive和texstudio是配套使用的,安装了texlive才能使用texstudio编辑器。此外,本教程借鉴了其他博客文章,因此本教程图片混有texstudio2018和texstudio2019,不过通过图片想要表达的意思没有歧义,整个安装过程亲测有效。TexLive下载和安装texlive下载地址:https://tug....
2020-01-31 12:33:10 20531 9
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人