输入两棵二叉树A和B,判断B是不是A的子结构。(约定空树不是任意一个树的子结构)
B是A的子结构, 即 A中有出现和B相同的结构和节点值。
例如:
给定的树 A:
3
/ \
4 5
/ \
1 2
给定的树 B:
4
/
1
返回 true,因为 B 与 A 的一个子树拥有相同的结构和节点值。
示例 1:
输入:A = [1,2,3], B = [3,1]
输出:false
示例 2:
输入:A = [3,4,5,1,2], B = [4,1]
输出:true
解题思路:
若树 BB 是树 AA 的子结构,则子结构的根节点可能为树 AA 的任意一个节点。因此,判断树 BB 是否是树 AA 的子结构,需完成以下两步工作:
先序遍历树 AA 中的每个节点 nA
A ;(对应函数 isSubStructure(A, B))
判断树 A中 以 nA为根节点的子树 是否包含树 B 。(对应函数 recur(A, B))
算法流程:
名词规定:树 AA 的根节点记作 节点 AA ,树 BB 的根节点称为 节点 BB 。
recur(A, B) 函数:
终止条件:
当节点 BB 为空:说明树 BB 已匹配完成(越过叶子节点),因此返回 truetrue ;
当节点 AA 为空:说明已经越过树 AA 叶子节点,即匹配失败,返回 falsefalse ;
当节点 AA 和 BB 的值不同:说明匹配失败,返回 falsefalse ;
返回值:
判断 AA 和 BB 的左子节点是否相等,即 recur(A.left, B.left) ;
判断 AA 和 BB 的右子节点是否相等,即 recur(A.right, B.right) ;
isSubStructure(A, B) 函数:
特例处理: 当 树 AA 为空 或 树 BB 为空 时,直接返回 falsefalse ;
返回值: 若树 BB 是树 AA 的子结构,则必满足以下三种情况之一,因此用或 || 连接;
以 节点 AA 为根节点的子树 包含树 BB ,对应 recur(A, B);
树 BB 是 树 AA 左子树 的子结构,对应 isSubStructure(A.left, B);
树 BB 是 树 AA 右子树 的子结构,对应 isSubStructure(A.right, B);
以上 2. 3. 实质上是在对树 AA 做 先序遍历 。
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def isSubStructure(self, A: TreeNode, B: TreeNode) -> bool:
#一是否含有子结构 ① 根节点重合 ②同样的子结构
# 二 根节点对应,树是否一样 ①根节点的值是否相同 ②左右子树是否对应
def f(A,B):
if B is None:
return True
if A is None:
return False
if A.val!=B.val: #若值不相等
return False
return f(A.left,B.left) and f(A.right,B.right)
if A is None or B is None: #开始两个树为空,没有子结构
return False
if f(A,B): #A,B根节点重合,判断是否为一样的结构
return True
return self.isSubStructure(A.left,B) or self.isSubStructure(A.right,B) #除根节点,子树判断
时间复杂度 O(MN)O(MN) : 其中 M,NM,N 分别为树 AA 和 树 BB 的节点数量;先序遍历树 AA 占用 O(M)O(M) ,每次调用 recur(A, B) 判断占用 O(N)O(N) 。
空间复杂度 O(M)O(M) : 当树 AA 和树 BB 都退化为链表时,递归调用深度最大。当 M \leq NM≤N 时,遍历树 AA 与递归判断的总递归深度为 MM ;当 M>NM>N 时,最差情况为遍历至树 AA 叶子节点,此时总递归深度为 MM。