剑指 Offer 26. 树的子结构

输入两棵二叉树A和B,判断B是不是A的子结构。(约定空树不是任意一个树的子结构)

B是A的子结构, 即 A中有出现和B相同的结构和节点值。

例如:
给定的树 A:

     3
    / \
   4   5
  / \
 1   2
给定的树 B:

   4 
  /
 1
返回 true,因为 B 与 A 的一个子树拥有相同的结构和节点值。

示例 1:

输入:A = [1,2,3], B = [3,1]
输出:false
示例 2:

输入:A = [3,4,5,1,2], B = [4,1]
输出:true

解题思路:
若树 BB 是树 AA 的子结构,则子结构的根节点可能为树 AA 的任意一个节点。因此,判断树 BB 是否是树 AA 的子结构,需完成以下两步工作:

先序遍历树 AA 中的每个节点 nA 
A  ;(对应函数 isSubStructure(A, B))
判断树 A中 以 nA为根节点的子树 是否包含树 B 。(对应函数 recur(A, B))

算法流程:
名词规定:树 AA 的根节点记作 节点 AA ,树 BB 的根节点称为 节点 BB 。

recur(A, B) 函数:

终止条件:
当节点 BB 为空:说明树 BB 已匹配完成(越过叶子节点),因此返回 truetrue ;
当节点 AA 为空:说明已经越过树 AA 叶子节点,即匹配失败,返回 falsefalse ;
当节点 AA 和 BB 的值不同:说明匹配失败,返回 falsefalse ;
返回值:
判断 AA 和 BB 的左子节点是否相等,即 recur(A.left, B.left) ;
判断 AA 和 BB 的右子节点是否相等,即 recur(A.right, B.right) ;
isSubStructure(A, B) 函数:

特例处理: 当 树 AA 为空 或 树 BB 为空 时,直接返回 falsefalse ;
返回值: 若树 BB 是树 AA 的子结构,则必满足以下三种情况之一,因此用或 || 连接;
以 节点 AA 为根节点的子树 包含树 BB ,对应 recur(A, B);
树 BB 是 树 AA 左子树 的子结构,对应 isSubStructure(A.left, B);
树 BB 是 树 AA 右子树 的子结构,对应 isSubStructure(A.right, B);
以上 2. 3. 实质上是在对树 AA 做 先序遍历 。

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution:
    def isSubStructure(self, A: TreeNode, B: TreeNode) -> bool:
        #一是否含有子结构 ① 根节点重合 ②同样的子结构
        # 二 根节点对应,树是否一样 ①根节点的值是否相同 ②左右子树是否对应
        def f(A,B):
            if B is None:
                return True
            if A is None:
                return False
            if A.val!=B.val:  #若值不相等
                return False

            return f(A.left,B.left) and f(A.right,B.right)
        

        if A is None or B is None:  #开始两个树为空,没有子结构
            return False
        if f(A,B):  #A,B根节点重合,判断是否为一样的结构
            return True
  
        return self.isSubStructure(A.left,B) or self.isSubStructure(A.right,B)  #除根节点,子树判断


    

时间复杂度 O(MN)O(MN) : 其中 M,NM,N 分别为树 AA 和 树 BB 的节点数量;先序遍历树 AA 占用 O(M)O(M) ,每次调用 recur(A, B) 判断占用 O(N)O(N) 。
空间复杂度 O(M)O(M) : 当树 AA 和树 BB 都退化为链表时,递归调用深度最大。当 M \leq NM≤N 时,遍历树 AA 与递归判断的总递归深度为 MM ;当 M>NM>N 时,最差情况为遍历至树 AA 叶子节点,此时总递归深度为 MM。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值