剑指 Offer 41. 数据流中的中位数

本文介绍了一种设计数据结构来处理数据流中中位数的方法。通过维护两个堆,一个最大堆和一个最小堆,可以有效地添加新数值并实时计算中位数。当两个堆大小相等时,中位数为两堆顶元素的平均值;否则,中位数为较小堆的堆顶元素。示例展示了如何使用这个数据结构进行添加数值和查找中位数的操作。
摘要由CSDN通过智能技术生成

难度困难167

如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值。如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值。

例如,

[2,3,4] 的中位数是 3

[2,3] 的中位数是 (2 + 3) / 2 = 2.5

设计一个支持以下两种操作的数据结构:

  • void addNum(int num) - 从数据流中添加一个整数到数据结构中。
  • double findMedian() - 返回目前所有元素的中位数。

示例 1:

输入:
["MedianFinder","addNum","addNum","findMedian","addNum","findMedian"]
[[],[1],[2],[],[3],[]]
输出:[null,null,null,1.50000,null,2.00000]
class MedianFinder:

    def __init__(self):
        """
        initialize your data structure here.
        """
        
        self.maxheap=[] #放最小的元素
        self.minheap=[] #放最大的元素


    def addNum(self, num: int) -> None:
        #使数据平均放入两个堆中,若多余一个,则放入minheap元素
        #1.将新元素加入到maxheap,2,将maxheap的堆顶元素加入到minheap,#python默认最小堆,要实现最大堆元素取反
        if len(self.maxheap)==len(self.minheap):
            heappush(self.minheap,-heappushpop(self.maxheap,-num))
        else:
            heappush(self.maxheap,-heappushpop(self.minheap,num))


    def findMedian(self) -> float:
        if len(self.minheap)==len(self.maxheap):
            return (self.minheap[0]-self.maxheap[0])/2.0
        else:
            return self.minheap[0]



# Your MedianFinder object will be instantiated and called as such:
# obj = MedianFinder()
# obj.addNum(num)
# param_2 = obj.findMedian()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值