BZOJ 4318 期望DP 解题报告

4318: OSU!

Description

osu 是一款群众喜闻乐见的休闲软件。
我们可以把osu的规则简化与改编成以下的样子:
一共有n次操作,每次操作只有成功与失败之分,成功对应1,失败对应0,n次操作对应为1个长度为n的01串。在这个串中连续的 X个1可以贡献X^3 的分数,这x个1不能被其他连续的1所包含(也就是极长的一串1,具体见样例解释)
现在给出n,以及每个操作的成功率,请你输出期望分数,输出四舍五入后保留1位小数。

Input

第一行有一个正整数n,表示操作个数。接下去n行每行有一个[0,1]之间的实数,表示每个操作的成功率。
Output

只有一个实数,表示答案。答案四舍五入后保留1位小数。

Sample Input

3
0.5
0.5
0.5

Sample Output

6.0

HINT

【样例说明】
000分数为0,001分数为1,010分数为1,100分数为1,101分数为2,110分数为8,011分数为8,111分数为27,总和为48,期望为48/8=6.0
N<=100000

【解题报告】
假如这个01串使确定的,考虑每新增一个位置,如果这个位置是0,则贡献为0,否则贡献为(x+1)^3−x^3=3*x^2+3*x+1,其中x为加入之前最长的全1后缀的长度
现在这个问题变成了期望问题,那么我们只需要维护一个x的期望和x2的期望即可。

代码如下:

/**************************************************************
    Problem: 4318
    User: onepointo
    Language: C++
    Result: Accepted
    Time:140 ms
    Memory:24260 kb
****************************************************************/

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define N 1000010

int n;
double g1[N],g2[N],dp[N];

int main()
{
    scanf("%d",&n);
    for(int i=1;i<=n;++i)
    {
        double x;scanf("%lf",&x);
        g1[i]=(g1[i-1]+1)*x;
        g2[i]=(g2[i-1]+2*g1[i-1]+1)*x;
        dp[i]=dp[i-1]+(3*g2[i-1]+3*g1[i-1]+1)*x;
    }
    printf("%.1f",dp[n]);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值