4318: OSU!
Description
osu 是一款群众喜闻乐见的休闲软件。
我们可以把osu的规则简化与改编成以下的样子:
一共有n次操作,每次操作只有成功与失败之分,成功对应1,失败对应0,n次操作对应为1个长度为n的01串。在这个串中连续的 X个1可以贡献X^3 的分数,这x个1不能被其他连续的1所包含(也就是极长的一串1,具体见样例解释)
现在给出n,以及每个操作的成功率,请你输出期望分数,输出四舍五入后保留1位小数。
Input
第一行有一个正整数n,表示操作个数。接下去n行每行有一个[0,1]之间的实数,表示每个操作的成功率。
Output
只有一个实数,表示答案。答案四舍五入后保留1位小数。
Sample Input
3
0.5
0.5
0.5
Sample Output
6.0
HINT
【样例说明】
000分数为0,001分数为1,010分数为1,100分数为1,101分数为2,110分数为8,011分数为8,111分数为27,总和为48,期望为48/8=6.0
N<=100000
【解题报告】
假如这个01串使确定的,考虑每新增一个位置,如果这个位置是0,则贡献为0,否则贡献为(x+1)^3−x^3=3*x^2+3*x+1,其中x为加入之前最长的全1后缀的长度
现在这个问题变成了期望问题,那么我们只需要维护一个x的期望和x2的期望即可。
代码如下:
/**************************************************************
Problem: 4318
User: onepointo
Language: C++
Result: Accepted
Time:140 ms
Memory:24260 kb
****************************************************************/
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define N 1000010
int n;
double g1[N],g2[N],dp[N];
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;++i)
{
double x;scanf("%lf",&x);
g1[i]=(g1[i-1]+1)*x;
g2[i]=(g2[i-1]+2*g1[i-1]+1)*x;
dp[i]=dp[i-1]+(3*g2[i-1]+3*g1[i-1]+1)*x;
}
printf("%.1f",dp[n]);
return 0;
}