BZOJ 1068 [SCOI 2007] 区间DP 解题报告

1068: [SCOI2007]压缩

Description

给一个由小写字母组成的字符串,我们可以用一种简单的方法来压缩其中的重复信息。压缩后的字符串除了小写字母外还可以(但不必)包含大写字母R与M,其中M标记重复串的开始,R重复从上一个M(如果当前位置左边没有M,则从串的开始算起)开始的解压结果(称为缓冲串)。 bcdcdcdcd可以压缩为bMcdRR,下面是解压缩的过程
这里写图片描述
另一个例子是abcabcdabcabcdxyxyz可以被压缩为abcRdRMxyRz。

Input

输入仅一行,包含待压缩字符串,仅包含小写字母,长度为n。

Output

输出仅一行,即压缩后字符串的最短长度。

Sample Input

bcdcdcdcdxcdcdcdcd

Sample Output

12

【解题报告】
区间DP,对于每一个状态一开始我们可以看做区间左端点有一个M
f[l][r][0/1]表示区间[l,r]中间是否加入了M,默认在L-1处有一个M时的最小长度
f[l][r][0]=min{f[l][k][0]+r-k} 注意,这里不能是f[k+1][r][0],因为这样默认了在k和k+1之间加入了一个M
f[l][r][0]=f[l][mid][0]+1 当s[mid+1,r]==s[l,mid]时,(mid=(l+r)/2)
f[l][r][1]=min{min(f[l][k][0],f[l][k][1])+1+min(f[k+1][r][0],f[k+1][r][1])} 当中间加入了M,枚举M放在哪里就可以

代码如下:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define N 110

int len,dp[N][N][2];
char s[N];

bool check(int l,int r)  
{  
    int mid=(l+r)/2;  
    for(int i=1;i<=mid-l+1;++i) 
        if(s[l+i-1]!=s[mid+i]) return 0;  
    return 1;  
}
int main()
{
    scanf("%s",s+1);
    len=strlen(s+1);
    for(int i=len;i>=1;--i)  
    for(int j=i;j<=len;++j)  
    {  
        dp[i][j][0]=dp[i][j][1]=j-i+1;  
        for(int k=i;k<j;++k)
            dp[i][j][1]=min(dp[i][j][1],min(dp[i][k][0],dp[i][k][1])+1+min(dp[k+1][j][0],dp[k+1][j][1]));
        for(int k=i;k<j;++k)
            dp[i][j][0]=min(dp[i][j][0],dp[i][k][0]+j-k);  
        if((j-i+1)%2==0&&check(i,j)) 
            dp[i][j][0]=dp[i][(i+j)/2][0]+1;  
        if(j-i+1==1) 
            dp[i][j][1]=len+1;  
    }  
    printf("%d\n",min(dp[1][len][0],dp[1][len][1]));  
    return 0;
}
发布了276 篇原创文章 · 获赞 13 · 访问量 8万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览