MMdetection在Featurize服务器运行时相关问题

写点闲话:

之前因为毕业,想写代码再也没有稳定的机子跑了,自己电脑有时候也带不动,所以开始使用Featurize,这里可以租一些显卡来用,价格总体来说对我们这种偶尔有大规模算力需求的打工人非常友好。使用方法也很简单,就是和使用linux一样。
因为Featurize的显卡环境相对固定,不存在每个人机子不一样的问题,配置环境这一步大家就可以放心抄作业了!(特别适用于只是为了拿这个做毕设的非计算机专业的同学!!!不需要花太多时间在环境配置上!!!)所以在本篇记录一下我安装的全部过程,大家直接选择相同的环境,然后用相同的代码,理论上百分百可以!

mmdetection版本选择

我用的是MMDetection v3.3.0 releases,这个不同版本的话,有些库位置不一样,可能会出现import error。

Featurize显卡选择

穷,且算力需求没有特别大,我用的是以下这个配置:在这里插入图片描述
要注意,选择显卡以后,显卡环境也预设了一部分,大家不要选错了,目前主流的是pytorch2.0+,但是我不太习惯,因此选的是1.10

环境配置

运行实例,然后等大概一两分钟就可以了,大家把自己github上面下载的工程文件上传或者直接在Featurize上新建一个终端,用命令行下载,(不过我相信看这个文档的小伙伴大概率会选择前者,dddd)。
然后进入mmdetection这个文件夹,新建一个ipykernel。
在这里插入图片描述
走到这一步基本就完成啦。

验证

!mim download mmdet --config rtmdet_tiny_8xb32-300e_coco --dest .

使用gpu测试:

!python demo/image_demo.py demo/demo.jpg rtmdet_tiny_8xb32-300e_coco.py --weights rtmdet_tiny_8xb32-300e_coco_20220902_112414-78e30dcc.pth --device cuda:0

使用cpu测试的话,–device cuda:0 改为–device cpu

如果有什么问题的话可以直接私信留言哈,欢迎交流~
项目合作也可以,欢迎骚扰~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值