宽度优先遍历
public static void level(Node head) {
if (head == null) {
return;
}
Queue<Node> queue = new LinkedList<>();
queue.add(head);
while (!queue.isEmpty()) {
Node cur = queue.poll();
System.out.println(cur.value);
if (cur.left != null) {
queue.add(cur.left);
}
if (cur.right != null) {
queue.add(cur.right);
}
}
}
二叉树的序列化和反序列化
先序
public static Queue<String> preSerial(Node head) {
Queue<String> ans = new LinkedList<>();
pres(head, ans);
return ans;
}
public static void pres(Node head, Queue<String> ans) {
if (head == null) {
ans.add(null);
} else {
ans.add(String.valueOf(head.value));
pres(head.left, ans);
pres(head.right, ans);
}
}
public static Node buildByPreQueue(Queue<String> prelist) {
if (prelist == null || prelist.size() == 0) {
return null;
}
return preb(prelist);
}
public static Node preb(Queue<String> prelist) {
String value = prelist.poll();
if (value == null) {
return null;
}
Node head = new Node(Integer.valueOf(value));
head.left = preb(prelist);
head.right = preb(prelist);
return head;
}
后序(可以忽略)
public static Queue<String> posSerial(Node head) {
Queue<String> ans = new LinkedList<>();
poss(head, ans);
return ans;
}
public static void poss(Node head, Queue<String> ans) {
if (head == null) {
ans.add(null);
} else {
poss(head.left, ans);
poss(head.right, ans);
ans.add(String.valueOf(head.value));
}
}
public static Node buildByPosQueue(Queue<String> poslist) {
if (poslist == null || poslist.size() == 0) {
return null;
}
// 左右中 -> stack(中右左)
Stack<String> stack = new Stack<>();
while (!poslist.isEmpty()) {
stack.push(poslist.poll());
}
return posb(stack);
}
public static Node posb(Stack<String> posstack) {
String value = posstack.pop();
if (value == null) {
return null;
}
Node head = new Node(Integer.valueOf(value));
head.right = posb(posstack);
head.left = posb(posstack);
return head;
}
按层序列化
public static Queue<String> levelSerial(Node head) {
Queue<String> ans = new LinkedList<>();
if (head == null) {
ans.add(null);
} else {
ans.add(String.valueOf(head.value));
Queue<Node> queue = new LinkedList<Node>();
queue.add(head);
while (!queue.isEmpty()) {
head = queue.poll(); // head 父 子
if (head.left != null) {
ans.add(String.valueOf(head.left.value));
queue.add(head.left);
} else {
ans.add(null);
}
if (head.right != null) {
ans.add(String.valueOf(head.right.value));
queue.add(head.right);
} else {
ans.add(null);
}
}
}
return ans;
}
public static Node buildByLevelQueue(Queue<String> levelList) {
if (levelList == null || levelList.size() == 0) {
return null;
}
Node head = generateNode(levelList.poll());
Queue<Node> queue = new LinkedList<Node>();
if (head != null) {
queue.add(head);
}
Node node = null;
while (!queue.isEmpty()) {
node = queue.poll();
node.left = generateNode(levelList.poll());
node.right = generateNode(levelList.poll());
if (node.left != null) {
queue.add(node.left);
}
if (node.right != null) {
queue.add(node.right);
}
}
return head;
}
求二叉树最宽的层有多少个节点
public static int maxWidthNoMap(Node head) {
if (head == null) {
return 0;
}
Queue<Node> queue = new LinkedList<>();
queue.add(head);
// 当前层,最右节点是谁
Node curEnd = head;
// 下一层,最右节点是谁
Node nextEnd = null;
int max = 0;
// 当前层的节点数
int curLevelNodes = 0;
while (!queue.isEmpty()) {
Node cur = queue.poll();
if (cur.left != null) {
queue.add(cur.left);
nextEnd = cur.left;
}
if (cur.right != null) {
queue.add(cur.right);
nextEnd = cur.right;
}
curLevelNodes++;
if (cur == curEnd) {
max = Math.max(max, curLevelNodes);
curLevelNodes = 0;
curEnd = nextEnd;
}
}
return max;
}
二叉树结构如下定义:
Class Node {
V value;
Node left;
Node right;
Node parent;
}
给你二叉树中的某个节点,返回该节点的后继节点
后继结点:中序遍历后,某个节点后面的那个节点
思路:中序,左中右,那么如果当前节点有右孩子,下一个节点就是右孩子的最左节点
如果没有,那么就找父亲,如果父亲的右孩子是他就继续找,要么找到头要么就找到他是父亲的左孩子为止
public static Node getSuccessorNode(Node node) {
if (node == null) {
return node;
}
if (node.right != null) {
return getLeftMost(node.right);
} else { // 无右子树
Node parent = node.parent;
while (parent != null && parent.right == node) { // 当前节点是其父亲节点右孩子
node = parent;
parent = node.parent;
}
return parent;
}
}
折纸问题-微软面试真题
请把一段纸条竖着放在桌子上,然后从纸条的下边向上方对折1次,压出折痕后展开。此时折痕是凹下去的,即折痕突起的方向指向纸条的背面。 如果从纸条的下边向上方连续对折2次,压出折痕后展开,此时有三条折痕,从上到下依次是下折痕、下折痕和上折痕。
给定一个输入参数N,代表纸条都从下边向上方连续对折N次。 请从上到下打印所有折痕的方向。
例如:N=1时,打印: down N=2时,打印: down down up
发现规律,每次的新折痕都是上面凹下面突,从上到下打印其实是个中序遍历
public static void printAllFolds(int N) {
process(1, N, true);
System.out.println();
}
// 当前你来了一个节点,脑海中想象的!
// 这个节点在第i层,一共有N层,N固定不变的
// 这个节点如果是凹的话,down = T
// 这个节点如果是凸的话,down = F
// 函数的功能:中序打印以你想象的节点为头的整棵树!
public static void process(int i, int N, boolean down) {
if (i > N) {
return;
}
//左凹
process(i + 1, N, true);
//中序打印
System.out.print(down ? "凹 " : "凸 ");
//右突
process(i + 1, N, false);
}
求出子树是二叉搜索树的个数
https://leetcode.com/problems/largest-bst-subtree
public static class TreeNode {
public int val;
public TreeNode left;
public TreeNode right;
public TreeNode(int value) {
val = value;
}
}
// mian
public static int largestBSTSubtree(TreeNode head) {
if (head == null) {
return 0;
}
return process(head).maxBSTSubtreeSize;
}
public static Info process(TreeNode x) {
if (x == null) {
return null;
}
Info leftInfo = process(x.left);
Info rightInfo = process(x.right);
//最大值最小值 总大小先认为是自己
int max = x.val;
int min = x.val;
int allSize = 1;
//左右有值则加上
if (leftInfo != null) {
max = Math.max(leftInfo.max, max);
min = Math.min(leftInfo.min, min);
allSize += leftInfo.allSize;
}
if (rightInfo != null) {
max = Math.max(rightInfo.max, max);
min = Math.min(rightInfo.min, min);
allSize += rightInfo.allSize;
}
//第一种情况 没有头 以左作为最大
int p1 = -1;
if (leftInfo != null) {
p1 = leftInfo.maxBSTSubtreeSize;
}
//第2种情况 没有头 以右作为最大
int p2 = -1;
if (rightInfo != null) {
p2 = rightInfo.maxBSTSubtreeSize;
}
//第3种情况 包含头 左+头+右
int p3 = -1;
//左右是不是搜索二叉树 取决于最大值==总值
boolean leftBST = leftInfo == null ? true : (leftInfo.maxBSTSubtreeSize == leftInfo.allSize);
boolean rightBST = rightInfo == null ? true : (rightInfo.maxBSTSubtreeSize == rightInfo.allSize);
if (leftBST && rightBST) {
//左最大值小于头 右最小值大于头
boolean leftMaxLessX = leftInfo == null ? true : (leftInfo.max < x.val);
boolean rightMinMoreX = rightInfo == null ? true : (x.val < rightInfo.min);
if (leftMaxLessX && rightMinMoreX) {
int leftSize = leftInfo == null ? 0 : leftInfo.allSize;
int rightSize = rightInfo == null ? 0 : rightInfo.allSize;
p3 = leftSize + rightSize + 1;
}
}
return new Info(Math.max(p1, Math.max(p2, p3)), allSize, max, min);
}
递归套路解:
完全二叉树:如果高度不一样,最后一层从左到右依次变满
public static boolean isCBT2(Node head) {
if (head == null) {
return true;
}
return process(head).isCBT;
}
// 对每一棵子树,是否是满二叉树、是否是完全二叉树、高度
public static class Info {
public boolean isFull;
public boolean isCBT;
public int height;
public Info(boolean full, boolean cbt, int h) {
isFull = full;
isCBT = cbt;
height = h;
}
}
public static Info process(Node X) {
if (X == null) {
return new Info(true, true, 0);
}
Info leftInfo = process(X.left);
Info rightInfo = process(X.right);
int height = Math.max(leftInfo.height, rightInfo.height) + 1;
boolean isFull = leftInfo.isFull
&&
rightInfo.isFull
&& leftInfo.height == rightInfo.height;
boolean isCBT = false;
if (isFull) {
isCBT = true;
} else { // 以x为头整棵树,不满
if (leftInfo.isCBT && rightInfo.isCBT) {
if (leftInfo.isCBT
&& rightInfo.isFull
&& leftInfo.height == rightInfo.height + 1) {
isCBT = true;
}
if (leftInfo.isFull
&&
rightInfo.isFull
&& leftInfo.height == rightInfo.height + 1) {
isCBT = true;
}
if (leftInfo.isFull
&& rightInfo.isCBT && leftInfo.height == rightInfo.height) {
isCBT = true;
}
}
}
return new Info(isFull, isCBT, height);
}
搜索二叉树:左边最大值比头小,右边最小值比头大
public static class Info {
public boolean isBST;
public int max;
public int min;
public Info(boolean i, int ma, int mi) {
isBST = i;
max = ma;
min = mi;
}
}
public static Info process(Node x) {
if (x == null) {
return null;
}
Info leftInfo = process(x.left);
Info rightInfo = process(x.right);
int max = x.value;
if (leftInfo != null) {
max = Math.max(max, leftInfo.max);
}
if (rightInfo != null) {
max = Math.max(max, rightInfo.max);
}
int min = x.value;
if (leftInfo != null) {
min = Math.min(min, leftInfo.min);
}
if (rightInfo != null) {
min = Math.min(min, rightInfo.min);
}
boolean isBST = true;
if (leftInfo != null && !leftInfo.isBST) {
isBST = false;
}
if (rightInfo != null && !rightInfo.isBST) {
isBST = false;
}
if (leftInfo != null && leftInfo.max >= x.value) {
isBST = false;
}
if (rightInfo != null && rightInfo.min <= x.value) {
isBST = false;
}
return new Info(isBST, max, min);
}
平衡二叉树:左右高度差小于2
public static Info process(Node x) {
if(x == null) {
return new Info(true, 0);
}
Info leftInfo = process(x.left);
Info rightInfo = process(x.right);
int height = Math.max(leftInfo.height, rightInfo.height) + 1;
boolean isBalanced = true;
if(!leftInfo.isBalanced) {
isBalanced = false;
}
if(!rightInfo.isBalanced) {
isBalanced = false;
}
if(Math.abs(leftInfo.height - rightInfo.height) > 1) {
isBalanced = false;
}
return new Info(isBalanced, height);
}
public static class Info{
public boolean isBalanced;
public int height;
public Info(boolean i, int h) {
isBalanced = i;
height = h;
}
}
满二叉树:左右都是满的且高度一样
public static class Info2 {
public boolean isFull;
public int height;
public Info2(boolean f, int h) {
isFull = f;
height = h;
}
}
public static Info2 process2(Node h) {
if (h == null) {
return new Info2(true, 0);
}
Info2 leftInfo = process2(h.left);
Info2 rightInfo = process2(h.right);
boolean isFull = leftInfo.isFull && rightInfo.isFull && leftInfo.height == rightInfo.height;
int height = Math.max(leftInfo.height, rightInfo.height) + 1;
return new Info2(isFull, height);
}
给定一棵二叉树的头节点head,和另外两个节点a和b。
返回a和b的最低公共祖先
思路:
有没有a?有没有b?最早遇到的头节点是啥?
public static class Info {
public boolean findA;
public boolean findB;
public Node ans;
public Info(boolean fA, boolean fB, Node an) {
findA = fA;
findB = fB;
ans = an;
}
}
public static Info process(Node x, Node a, Node b) {
if (x == null) {
return new Info(false, false, null);
}
Info leftInfo = process(x.left, a, b);
Info rightInfo = process(x.right, a, b);
boolean findA = (x == a) || leftInfo.findA || rightInfo.findA;
boolean findB = (x == b) || leftInfo.findB || rightInfo.findB;
Node ans = null;
if (leftInfo.ans != null) {
ans = leftInfo.ans;
} else if (rightInfo.ans != null) {
ans = rightInfo.ans;
} else {
if (findA && findB) {
ans = x;
}
}
return new Info(findA, findB, ans);
}