①数据插值可以根据有限个点的取值状况,合理估算出附近其他点的取值,从而节约大量的实验和测试资源,节省大量的人力、物力和财力。
②数据插值能够根据已知数据推算未知数据,这使得人们解决问题的能力得到了拓展和延伸。
1、引例-零件加工问题
例1、在飞机制造中,机翼的加工是一项关键技术。由于机翼尺寸很大,通常在图纸中只能标出一些关键点的数据。下表给出了某型飞机机翼的下缘轮廓线数据,求x每改变0.1时y的值。
它前段采样点稀疏,后段采样点密集,说明这段曲线前面可能比较规律、平滑,后段比较复杂
x = [0 3 5 7 9 11 12 13 14 15];
y = [0 1.2 1.7 2 2.1 2 1.8 1.2 1 1.6];
plot(x,y) %为插值前的曲线
hold on;
x1 = 0:0.1:15; %x每改变0.1要插一个值
y1 = interp1(x,y,x1,'spline'); %插值函数interp1:计算出这些插值点在y方向上的值存入y1中,y1很长
plot(x1,y1) %完成插值后的曲线,曲线变得光滑很多
legend('y原曲线','y1插值后的曲线')
title('零件加工问题',