MATLAB插值函数

本文详细介绍了MATLAB中的各种插值函数,包括interp1、interp2、interpn和griddata,以及griddedInterpolant和scatteredInterpolant类。讨论了不同插值方法的适用场景,如线性、最近邻、自然样条和三次样条,并通过实例展示了插值函数的使用和效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、MATLAB插值函数概览

1)本节重点介绍的插值函数

MATLAB插值函数适用情况基础句式
interp1 函数interp1 主要用于一维数据的插值interp1(x, y, x_interp, ‘linear’);
其中 x 和 y 是已知数据点,x_interp 是要插值的目标点。
interp2 函数interp2 用于在二维平面上进行插值。适用于网格化的数据。interp2(X, Y, Z, X_interp, Y_interp, ‘linear’);
其中 X、Y、Z 是已知数据网格,X_interp 和 Y_interp 是要插值的目标点。
interpn 函数多维插值,适用于处理高维数据。interpn(X1, X2, …, V, Xq1, Xq2, …);
griddata 函数griddata 用于在不规则的数据点上进行插值,支持生成二维或高维的插值结果。适用于处理散乱的数据。interp_values = griddata(x, y, z, x_interp, y_interp, ‘linear’);
其中,x、y、z 是已知的数据点和值。x_interp、y_interp 是要插值的目标点。
griddedInterpolant 类griddedInterpolant 类是 MATLAB 中用于多维数据插值的类。这个类提供了一种高效的方法来进行插值,特别适用于规则网格上的数据,是 interp1、interp2、interp3 的通用化。
(区别:griddedInterpolant 类适用于规则网格上的数据,也就是说,输入的坐标 X 应该是一个多维的规则网格,而 griddata 函数适用于不规则的或者散乱的数据点,坐标信息 x、y 可以是任意形状。)
F = griddedInterpolant(X, V, method);
Vq = F(Xq);
其中,X:规则网格上的坐标信息,可以是一个多维数组,表示每个维度上的坐标。V:规则网格上对应坐标的值,与 X 的大小应该一致。method:插值方法,可以是 ‘linear’、‘nearest’、‘cubic’ 等。 Xq:待插值点的坐标,可以是一个数组或多维数组。
scatteredInterpolant 类scatteredInterpolant 类提供了更灵活的方式进行不规则数据点的插值,支持多种插值方法。适用于处理不规则或散乱的数据点,类似于 griddata 但提供更多的控制选项。F = scatteredInterpolant(x, y, z, ‘linear’);
interp_values = F(x_interp, y_interp);
其中,x、y、z 是已知的数据点和值。x_interp、y_interp 是要插值的目标点。F 对象通过指定的插值方法进行插值。

2)MathWorks官网给出的其他插值函数:

网页链接: MathWorks-插值简介


二、插值方法

1)scatteredInterpolant 类

scatteredInterpolant 类支持的插值方法包括:

  • ‘linear’(线性插值)(默认)
    适用于大部分情况,计算较快。对于不规则分布的数据点,表现良好。

  • ‘nearest’(最近邻插值)
    适用于数据点分布较密集的情况。插值结果可能较粗糙。

  • ‘natural’(自然样条插值)
    适用于平滑数据,对非线性特征有较好的适应性。


网页链接: Mathworks-scatteredInterpolant函数


2)griddata 函数

  • ‘linear’(线性插值)
    适用于大部分情况,计算较快。线性插值在不规则数据点上表现良好,但对于数据的非线性特征可能表现不佳。

  • ‘nearest’(最近邻插值)
    适用于数据点分布较密集的情况。插值结果可能较粗糙。

  • ‘natural’(自然样条插值)
    适用于平滑数据,对非线性特征有较好的适应性。

  • ‘cubic’(三次样条插值)
    适用于平滑数据,对非线性特征有较好的适应性。计算相对较慢。

  • ‘v4’(Vandermonde 插值)
    适用于一维数据的插值。对于不规则分布的数据,可能表现不如其他插值方法。


网页链接: Mathworks-griddata 函数


三、插值代码实战

1)scatteredInterpolant 函数实战

针对下述相同的原始数据,采用 scatteredInterpolant 函数的不同插值方法(‘linear’、‘nearest’、‘natural’),进行对比。

  • 原始数据
x = -3 + 6*rand(50,1);
y = -3 + 6*rand(50,1);
v = sin(x).^4 .* cos(y);
F = scatteredInterpolant(x,y,v);
[xq,yq] = meshgrid(-3:0.1:3);
  • ‘nearest’方法代码:
F.Method = 'nearest';
vq1 = F(xq,yq);
plot3(x,y,v,'mo')
hold on
mesh(xq,yq,vq1)
title('Nearest Neighbor')
legend('Sample Points','Interpolated Surface','Location','NorthWest')
  • ‘nearest’运行结果:
  • ‘linear’方法代码:
F.Method = 'linear';
vq2 = F(xq,yq);
figure
plot3(x,y,v,'mo')
hold on
mesh(xq,yq,vq2)
title('Linear')
legend('Sample Points','Interpolated Surface','Location','NorthWest')
  • ‘linear’运行结果:
  • ‘natural’方法代码:
F.Method = 'natural';
vq3 = F(xq,yq);
figure
plot3(x,y,v,'mo')
hold on
mesh(xq,yq,vq3)
title('Natural Neighbor')
legend('Sample Points','Interpolated Surface','Location','NorthWest')
  • ‘natural’运行结果:
  • 绘制精确解。
figure
plot3(x,y,v,'mo')
hold on
mesh(xq,yq,sin(xq).^4 .* cos(yq))
title('Exact Solution')
legend('Sample Points','Exact Surface','Location','NorthWest')
  • 对比可知,这三种插值方法,性能都一般。

2)griddata 函数实战

针对下述相同的原始数据,采用 griddata 函数的不同插值方法(‘linear’、‘nearest’、‘natural’、‘cubic’),进行对比。

  • 原始数据
x = -3 + 6*rand(50,1);
y = -3 + 6*rand(50,1);
v = sin(x).^4 .* cos(y);
[xq,yq] = meshgrid(-3:0.1:3);
  • ‘nearest’方法代码:
z1 = griddata(x,y,v,xq,yq,'nearest');
plot3(x,y,v,'mo')
hold on
mesh(xq,yq,z1)
title('Nearest Neighbor')
legend('Sample Points','Interpolated Surface','Location','NorthWest')

  • ‘nearest’运行结果:
  • ‘linear’方法代码:
z2 = griddata(x,y,v,xq,yq,'linear');
figure
plot3(x,y,v,'mo')
hold on
mesh(xq,yq,z2)
title('Linear')
legend('Sample Points','Interpolated Surface','Location','NorthWest')
  • ‘linear’运行结果:
  • ‘natural’方法代码:
z3 = griddata(x,y,v,xq,yq,'natural');
figure
plot3(x,y,v,'mo')
hold on
mesh(xq,yq,z3)
title('Natural Neighbor')
legend('Sample Points','Interpolated Surface','Location','NorthWest')
  • ‘natural’运行结果:
  • ‘cubic’方法代码:
z4 = griddata(x,y,v,xq,yq,'cubic');
figure
plot3(x,y,v,'mo')
hold on
mesh(xq,yq,z4)
title('Cubic')
legend('Sample Points','Interpolated Surface','Location','NorthWest')
  • ‘cubic’运行结果:
  • 绘制精确解。
figure
plot3(x,y,v,'mo')
hold on
mesh(xq,yq,sin(xq).^4 .* cos(yq))
title('Exact Solution')
legend('Sample Points','Exact Surface','Location','NorthWest')

注意:griddata 函数相比 scatteredInterpolant 函数,多了 cubic 插值。


四、网页链接

  1. MathWorks-插值简介

  2. Mathworks-scatteredInterpolant函数

  3. Mathworks-griddata 函数

Matlab中有几个常用的插值函数,包括interp1、interp2和interp3等。其中,interp1函数用于一维插值,interp2函数用于二维插值,interp3函数用于三维插值。这些函数可以根据已知点的函数值进行插值,以得到其他点的近似值。 具体来说,interp1函数可以进行分段线性插值、临近插值、球面插值和三次多项式插值等。例如,可以使用interp1函数进行分段线性插值:y1=interp1(x,y,xx),其中x和y是已知点的坐标和函数值,xx是需要插值的点的坐标。同样地,可以使用interp1函数进行临近插值、球面插值和三次多项式插值,分别对应的调用方式为interp1(x,y,xx,'nearest')、interp1(x,y,xx,'spline')和interp1(x,y,xx,'cubic')。 总之,Matlab提供了一系列插值函数,可以根据已知点的函数值进行插值计算,以获取其他点的近似值。根据需要,可以选择合适的插值方法来进行插值计算。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [MATLAB插值函数interp1](https://blog.csdn.net/zengxiantao1994/article/details/70177996)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* [matlab插值函数](https://blog.csdn.net/m0_50888394/article/details/117903409)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值