版本 tensoflow 2.5.0
张量(tensor):多维数组(列表) 阶:张量的维数
维数 | 阶 | 名字 | 例子 |
0-D | 0 | 标量scalar | s=123 |
1-D | 1 | 向量vector | v=[1,2,3] |
2-D | 2 | 矩阵matrix | m=[[1,2,3],[4,5,6],[7,8,9]] |
n-D | n | 张量tensor | t=[[[(n个方括号) |
张量可表示0阶到n阶数组(列表)
ps:有几个方括号就是几阶张量
数据类型
tf.int,tf.float,......
tf.int32, tf.float32, tf.float64
tf.bool
tf.constant([True,False])
tf.string
tf.constant("Hello world")
创建张量的方法:
tf.constant(张量内容,dtype=数据类型(可选))
———————————————————————————————————————————————————————————————————————————————————————————
import tensorflow as tf
a = tf.constant([1,5],dtype=tf.int64)
print(a)
print(a.dtype)
print(a.shape)
tf.Tensor([1 5], shape=(2,), dtype=int64)
<dtype: 'int64'>
(2,)
其中,张量的形状看shape的逗号隔开了几个数字,上例中隔开了一个数字,所以是一维张量,数字2表示的是这个一维张量中包含两个元素(分别是数值1和5)
tf.zeros(维度)#创建元素全为0的张量
tf.ones(维度)#创建元素全为1的张量
tf.fill(维度,指定值)#创建全为指定值的张量
———————————————————————————————————————————————————————————————————————————————————————————
a=tf.zeros([2,3])#2行3列的0矩阵,2维张量
b=tf.ones(4)#创建一个1维张量,其中有4个元素
c=tf.fill([2,2],9)#创建一个2维张量,全部元素都为9
print(a)
print(b)
print(c)
结果:
tf.Tensor([[0. 0. 0.][0. 0. 0.]], shape=(2, 3), dtype=float32)
tf.Tensor([1. 1. 1. 1.], shape=(4,), dtype=float32)
tf.Tensor([[9 9][9 9]], shape=(2, 2), dtype=int32)
随机生成初始化参数:
1.生成正态分布的随机数,默认均值为0,标准差为1
tf.random.normal(维度,mean=均值, stddev=标准差)
2.生成截断式正态分布随机数(能确保所生成的随机数在 之间)
tf.random.truncated_normal(维度,mean=均值,stddev=标准差)
3.生成均匀分布的随机数 [minval,maxval) 左闭右开区间
tf.random.uniform(维度,minval=最小值,maxval=最大值)
常用函数
1.强制类型转换
tf.cast(张量名,dtype=数据类型)
2.计算张量维度上元素的最小值、最大值
tf.reduce_min(张量名)
tf.reduce_max(张量名)
3.理解axis
在二维张量中,通过调整axis等于0或1控制执行维度
(1)axis=0代表沿纵向计算,即计算列,axis=1代表沿横向方向,即计算行
(2)若不指定axis,则所有元素都将参与计算
tf.reduce_mean(张量名,axis=操作轴)
tf.reduce_sum(张量名,axis=操作轴)
4.tf.Variable
该函数可将变量标记为“可训练”,被标记的变量在反向传播中记录梯度信息。在神经网络训练中,常使用该函数标记待训练的参数。
tf.Variable(初始值)
w = tf.Variable(tf.random.normal([2,2],mean=0,stddev=1))
5.数学运算(必须保证在维度相同的情况下才能进行四则运算)
tf.add, tf.subtract, tf.multiply, tf.divide (加减乘除)
tf.square, tf.pow(张量名,n次方数), tf.sqrt (平方,次方,开方)
tf.matmul (矩阵乘法)
6.特征与标签配对函数
切分传入张量的第一维度,生成输入特征/标签对,构建数据集
data = tf.data.Dataset.from_tensor_slices((输入特征,标签))
features = tf.constant([12,23,10,17])
labels = tf.constant([0,1,1,0])
dataset = tf.data.Dataset.from_tensor_slices((features,labels))
print(dataset)
for element in dataset:
print(element)
结果:
<TensorSliceDataset shapes: ((), ()), types: (tf.int32, tf.int32)> (特征,标签)配对
(<tf.Tensor: shape=(), dtype=int32, numpy=12>, <tf.Tensor: shape=(), dtype=int32, numpy=0>)
(<tf.Tensor: shape=(), dtype=int32, numpy=23>, <tf.Tensor: shape=(), dtype=int32, numpy=1>)
(<tf.Tensor: shape=(), dtype=int32, numpy=10>, <tf.Tensor: shape=(), dtype=int32, numpy=1>)
(<tf.Tensor: shape=(), dtype=int32, numpy=17>, <tf.Tensor: shape=(), dtype=int32, numpy=0>)
7.求导运算
with结构记录计算过程,gradient求出张量的梯度
with tf.GradientTape() as tape:
若干计算过程
gards = tape.gradient(函数,对谁求导)
——————————————————————————————————————————————————————————————————————————————————————————
with tf.GradientTape() as tape:
w = tf.Variable(tf.constant(3.0))
loss = tf.pow(w,2)
grad = tape.gradient(loss,w)
print(grad)
结果:
tf.Tensor(6.0, shape=(), dtype=float32)
8.枚举函数
enumerate可遍历每个元素,组合为:索引 元素,常在for循环中使用
seq=['one','two','three']
for i,element in enumerate(seq):
print(i,element)
结果:
0 one
1 two
2 three
9.独热编码(one-hot encoding):分类问题中,用独热码做标签,标记类别:1表示是,0表示非。
tf.one_hot(待转换数据,depth=几分类)
———————————————————————————————————————————————————————————————————————————————————————————
classes = 3
labels = tf.constant([1,0,2])
output = tf.one_hot(labels,depth=classes)
print(output)
结果:
tf.Tensor(
[[0. 1. 0.]
[1. 0. 0.]
[0. 0. 1.]], shape=(3, 3), dtype=float32)
10.使输出结果符合概率分布
tf.nn.softmax(x)
———————————————————————————————————————————————————————————————————————————————————————————
y=tf.constant([1.01,2.01,-0.66])
y_pro=tf.nn.softmax(y)
print("After softmax, y_pro is:",y_pro)
结果:
After softmax, y_pro is: tf.Tensor([0.25598174 0.69583046 0.04818781], shape=(3,), dtype=float32)
11.参数的自更新函数
常用于:(1)赋值操作,更新参数的值并返回(2)调用assign_sub前,先用tf.Variable定义变量w为可训练(可自更新)
w.assign_sub(w要自减的内容)
———————————————————————————————————————————————————————————————————————————————————————————
w=tf.Variable(4)#使用tf.Variable()对参数w定义为可训练
w.assign_sub(1)#自减操作,即w=w-1
print(w)
结果:
<tf.Variable 'Variable:0' shape=() dtype=int32, numpy=3>
12.返回张量沿指定维度的最大索引值函数tf.argmax()
tf.argmax(张量名,axis=操作轴)
———————————————————————————————————————————————————————————————————————————————————————————
test = tf.constant([[1,2,3],[2,3,4],[5,4,3],[8,7,2]])
print(test)
print(tf.argmax(test,axis=0))
print(tf.argmax(test,axis=1))
结果:
tf.Tensor(
[[1 2 3]
[2 3 4]
[5 4 3]
[8 7 2]], shape=(4, 3), dtype=int32)
tf.Tensor([3 3 1], shape=(3,), dtype=int64)
tf.Tensor([2 2 0 0], shape=(4,), dtype=int64)