一些比较特殊的数

主要来源于教材《组合数学及其应用》

鸽笼原理

定理5.1

如果把 n + 1 n+1 n+1个物体加入到 n n n 个盒子中,则至少有一个盒子放有两个或者更多的物体。

定理5.2

q i q_i qi 是正整数 ( i = 1 , 2 , ⋅ ⋅ ⋅ , n ) (i=1,2,···,n) (i=1,2,,n) q ≥ q 1 + q 2 + ⋅ ⋅ ⋅ + q n − n + 1 q \geq q_1 + q_2 + ··· + q_n - n + 1 qq1+q2++qnn+1,如果把 q q q 个物体放入 n n n 个盒子中,则必存在一个 i i i ,使得第 i i i 个盒子至少有 q i q_i qi 个物体。

  • 推论1: 如果把 n ( r − 1 ) + 1 n(r-1)+1 n(r1)+1个物体放入 n n n 个盒子中,则至少存在一个盒子放有不少于 r r r 个物体。

  • 推论2:对于正整数 m i ( i = 1 , 2 , ⋅ ⋅ ⋅ , n ) m_i(i=1,2,···,n) mi(i=1,2,,n),如果
    ∑ i = 1 n m i n > r − 1 \frac{\sum_{i=1}^nm_i}{n} > r-1 ni=1nmi>r1
    则至少存在一个 i i i,使得 m i ≥ r m_i \geq r mir


R a m s e y Ramsey Ramsey

定义5.1

a a a b b b 为正整数,令 R ( a , b ) R(a,b) R(a,b) 是保证有 a a a 个人彼此相识或者有 b b b 个人彼此不相识所需要的最少人数,则称 R ( a , b ) R(a,b) R(a,b) R a m s e y Ramsey Ramsey数。

定理5.8

a , b ≥ 2 a,b\geq 2 a,b2 时, R ( a , b ) R(a,b) R(a,b) 是一个有限数,并且有 R ( a , b ) ≤ R ( a − 1 , b ) + R ( a , b − 1 ) R(a,b) \leq R(a-1,b) + R(a,b-1) R(a,b)R(a1,b)+R(a,b1)


S t i r l i n g Stirling Stirling
  1. 第一类 s t i r l i n g stirling stirling

    [ x ] n = x ∗ ( x − 1 ) ∗ ⋅ ⋅ ⋅ ∗ ( x − n + 1 ) [x]_n = x*(x-1)*···*(x-n+1) [x]n=x(x1)(xn+1)

    定义4.8

    [ x ] n = ∑ k = 0 n S 1 ( n , k ) x k [x]_n = \sum_{k=0}^nS_1(n,k)x^k [x]n=k=0nS1(n,k)xk,则称 S 1 ( n , k ) S_1(n,k) S1(n,k)为第一类 s t i r l i n g stirling stirling数。显然, S 1 ( n , k ) S_1(n,k) S1(n,k)就是多项式 [ x ] n [x]_n [x]n的系数。

    定理4.7

    第一类 s t i r l i n g stirling stirling数满足如下递归关系式:

    { S 1 ( n + 1 , k ) = S 1 ( n , k − 1 ) − n S 1 ( n , k ) n ≥ 0 , k > 0 S 1 ( 0 , 0 ) = 1 , S 1 ( n , 0 ) = 0 \begin{cases} S_1(n+1,k)=S_1(n,k-1)-nS_1(n,k) & n\geq 0,k>0 \\ S_1(0,0) = 1,S_1(n,0)=0 \end{cases} { S1(n+1,k)=S1(n,k1)nS1(n,k)S1(0,0)=1,S1(n,0)=0n0,k>0

    证明:
    [ x ] n + 1 = ∑ k = 0 n + 1 S 1 ( n + 1 , k ) x k [x]_{n+1} = \sum_{k=0}^{n+1}S_1(n+1,k)x^k [x]n+1=k=0n+1S1(n+1,k)xk

    [ x ] n + 1 = x ∗ ( x − 1 ) ∗ ⋅ ⋅ ⋅ ∗ ( x − n ) = [ x ] n ∗ ( x − n ) = ∑ k = 0 n S 1 ( n , k ) x k + 1 − n ∑ k = 0 n S 1 ( n , k ) x k [x]_{n+1} = x*(x-1)*···*(x-n) = [x]_n*(x-n) =\sum_{k=0}^nS_1(n,k)x^{k+1} - n\sum_{k=0}^nS_1(n,k)x^k [x]n+1=x(x1)(xn)=[x]n(xn)=k=0nS1(n,k)xk+1nk=0n

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值