多项式规约及其常见问题的规约方法

本文探讨多项式规约的概念,指出如果问题X可以多项式归约到Y,意味着X在多项式时间内解决的可能性。文章通过点覆盖与独立集、3-SAT与多项式时间可解问题的关系等例子,详细解释了多项式规约的性质和证明方法,同时也讨论了P,NP,NPC和NPH等复杂性类的问题。
摘要由CSDN通过智能技术生成

来源于我们上课的PPT

多项式规约

如果问题 X X X的任意实例 能够经过 多项式时间的标准计算步骤 和 多项式时间 调用问题 Y Y Y的解决方案 被解决,则 X ≤ p Y X \leq_{p}Y XpY

注意方向,是 X X X可以多项式归约到 Y Y Y

性质

如果 X ≤ p Y X \leq_{p} Y XpY 并且 Y Y Y可以在多项式时间能够得到解决,那么 X X X也可以在多项式时间内得到解决。

如果 X ≤ p Y X \leq_pY XpY 并且 X X X不存在多项式时间的解,则 Y Y Y也不存在多项式时间的解。

如果 X ≤ p Y X \leq_{p}Y XpY 并且 Y ≤ p X Y \leq_pX YpX,则 X ≡ p Y X \equiv_p Y XpY,既 X X X Y Y Y是等价的。

如果 X ≤ p Y X \leq_p Y XpY 并且 Y ≤ p Z Y \leq_p Z YpZ,则 X ≤ p Z X \leq_p Z XpZ

举例
  1. 点覆盖 ≡ p \equiv_p p 独立集

在这里插入图片描述

证明:

①点覆盖可以归约到独立集,假设 S S S是图 G G G中的任意一个独立集,现在考察任意一条边 ( u , v ) ∈ E (u,v) \in E (u,v)E,都有: u ∈ V − S u \in V - S uVS 或者 v ∈ V − S v \in V - S vVS,因此, V − S V - S VS 覆盖了边 ( u , v ) (u,v) (u,v),既 V − S V- S VS G G G的一个点覆盖。

②独立集可以规约到点覆盖,假设 S ′ S' S是图 G G G中的任意一个点覆盖,现在考察 V − S ′ V - S' VS中的任意两个点 u , v u,v u,v,都有: ( u , v ) ∉ E (u,v) \notin E (u,v)/E理由如下,如果 ( u , v ) ∈ E (u,v)\in E (u,v)E,根据点覆盖的定义,有 u ∈ S ′ u \in S' uS 或者 v ∈ S ′ v \in S' vS,而 u , v ∈ V − S ′ u,v \in V-S' u,vVS,显然矛盾,故 ( u , v ) (u,v) (u,v)不是图中的边。因此, V − S ′ V-S' VS中的任意两点都不存在边,故 V − S ′ V - S' VS G G G的一个独立集。

斜体字部分不记,能理解就好

  1. 点覆盖 ≤ p \leq_p p 集合覆盖

在这里插入图片描述

证明的总体思路:

对于点覆盖的任意一个实例 G = ( V , E ) G=(V,E) G=(V,E),构造一个 集合覆盖大小 等于 点覆盖大小 的集合覆盖实例。

证明:

对于任意一个点覆盖,假设它的大小为 k

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值