/**/
/*
NO.1
O(n^2)的算法:
*/
/**/ /*枚举主串的每一个位置开始比较*/
#include < stdio.h >
#define MAX 101
int main( void )
... {
char a[MAX],b[MAX];
int la=0,lb=0,i,j,k ;
char c ;
while ( (c =getchar())!= ' ')
a[++la] = c ;
while ( (c =getchar())!= ' ')
b[++lb] = c ;
for(i=1 ; i<=la ; i++)
...{
for(j=1,k=i; j<= lb && (b[j] == a[k]) ; j++,k++) ;
if ( j > lb )
break ;
}
if ( j > lb)
printf("No.%d ",i);
else
printf("No Soulation!!! ");
system("pause");
return 0 ;
}
/**/ /*
No.2 O(a+b) 的算法:该算法是由knuth 等三个人想出来的,简称为:KMP 算法
基本思想是:
一般的算法为什么这么低效呢?那是因为主串指针回溯情况过多:
主串指针如果不回溯的话,速度就会加快,那我们就会想:
如何让主串指针不回溯?
KMP算法就是解决了这个问题,所以速度变得更快速了
它是这样子的:
用一个数组:next[] 求得失配时的位置,然后保存下来,具体请看如下程序:
*/
*/
#include < stdio.h >
#include < stdlib.h >
#include < string .h >
#define MAX 101
void get_next( int * next, char * a, int la) /**/ /*求NEXT[]的值*/
... {
int i=1,j=0 ;
next[1] = 0 ;
while ( i <= la) /**//*核心部分*/
...{
if( a[i] == a[j] || j == 0 )
...{
j ++ ;
i ++ ;
if( a[i] == a[j])
next[i] = next[j];
else
next[i] = j ;
}
else
j = next[j] ;
}
}
int str_kmp( int * next, char * A , char * a, int lA, int la) /**/ /* EASY*/
... {
int i,j,k ;
i = 1 ;
j = 1 ;
while ( i<=lA && j <= la )
...{
if(A[i] == a[j] || j == 0 )
...{
i ++ ;
j ++ ;
}
else
j = next[j] ;
}
if ( j> la)
return i-j+1 ;
else
return -1 ;
}
int main( void )
... {
int n,k;
int next[MAX]=...{0} ;
int lA=0,la =0 ;
char A[MAX],a[MAX] ;
scanf("%s %s",A,a) ;
lA = strlen(A);
la = strlen(a);
for(k=la-1; k>= 0 ;k --)
a[k+1] = a[k] ;
for(k=lA-1; k>= 0 ;k --)
A[k+1] = A[k] ;
get_next(next,a,la) ;
k = str_kmp(next,A,a,lA,la);
if ( -1 == k)
printf("Not Soulation!!! ");
else
printf("%d ",k) ;
system("pause");
return 0 ;
}
NO.1
O(n^2)的算法:
*/
/**/ /*枚举主串的每一个位置开始比较*/
#include < stdio.h >
#define MAX 101
int main( void )
... {
char a[MAX],b[MAX];
int la=0,lb=0,i,j,k ;
char c ;
while ( (c =getchar())!= ' ')
a[++la] = c ;
while ( (c =getchar())!= ' ')
b[++lb] = c ;
for(i=1 ; i<=la ; i++)
...{
for(j=1,k=i; j<= lb && (b[j] == a[k]) ; j++,k++) ;
if ( j > lb )
break ;
}
if ( j > lb)
printf("No.%d ",i);
else
printf("No Soulation!!! ");
system("pause");
return 0 ;
}
/**/ /*
No.2 O(a+b) 的算法:该算法是由knuth 等三个人想出来的,简称为:KMP 算法
基本思想是:
一般的算法为什么这么低效呢?那是因为主串指针回溯情况过多:
主串指针如果不回溯的话,速度就会加快,那我们就会想:
如何让主串指针不回溯?
KMP算法就是解决了这个问题,所以速度变得更快速了
它是这样子的:
用一个数组:next[] 求得失配时的位置,然后保存下来,具体请看如下程序:
*/
*/
#include < stdio.h >
#include < stdlib.h >
#include < string .h >
#define MAX 101
void get_next( int * next, char * a, int la) /**/ /*求NEXT[]的值*/
... {
int i=1,j=0 ;
next[1] = 0 ;
while ( i <= la) /**//*核心部分*/
...{
if( a[i] == a[j] || j == 0 )
...{
j ++ ;
i ++ ;
if( a[i] == a[j])
next[i] = next[j];
else
next[i] = j ;
}
else
j = next[j] ;
}
}
int str_kmp( int * next, char * A , char * a, int lA, int la) /**/ /* EASY*/
... {
int i,j,k ;
i = 1 ;
j = 1 ;
while ( i<=lA && j <= la )
...{
if(A[i] == a[j] || j == 0 )
...{
i ++ ;
j ++ ;
}
else
j = next[j] ;
}
if ( j> la)
return i-j+1 ;
else
return -1 ;
}
int main( void )
... {
int n,k;
int next[MAX]=...{0} ;
int lA=0,la =0 ;
char A[MAX],a[MAX] ;
scanf("%s %s",A,a) ;
lA = strlen(A);
la = strlen(a);
for(k=la-1; k>= 0 ;k --)
a[k+1] = a[k] ;
for(k=lA-1; k>= 0 ;k --)
A[k+1] = A[k] ;
get_next(next,a,la) ;
k = str_kmp(next,A,a,lA,la);
if ( -1 == k)
printf("Not Soulation!!! ");
else
printf("%d ",k) ;
system("pause");
return 0 ;
}