同余
|
同余式性质应用非常广泛,在处理某些整除性、进位制、对整数分类、解不定方程等方面的问题中有着不可替代的功能,与之密切相关的的数论定理有欧拉定理、费尔马定理和中国剩余定理。 基础知识 三个数论函数 对于任何正整数均有定义的函数,称为数论函数。在初等数论中,所能用到的无非也就有三个,分别为:高斯(Gauss)取整函数[x]及其性质,除数函数d(n)和欧拉(Euler)函数和它的计算公式。 1. 高斯(Gauss)取整函数[] 设是实数,不大于的最大整数称为的整数部分,记为[];称为的小数部分,记为{}。例如:[0.5]=0,等等。 由的定义可得如下性质: 性质1.; 性质2.; 性质3.设,则; 性质4.;; 性质5. ; 性质6.对于任意的正整数,都有如下的埃米特恒等式成立: ; 为了描述性质7,我们给出如下记号:若,且 ,则称为恰好整除,记为。例如:我们有等等,其实,由整数唯一分解定理:任何大于1的整数能唯一地写成的形式,其中为质(素)数()。我们还可以得到:。 性质7.若,则 请注意,此式虽然被写成了无限的形式,但实际上对于固定的,必存在正整数,使得,因而,故,而且对于时,都有。因此,上式实际上是有限项的和。另外,此式也指出了乘数的标准分解式中,素因数的指数的计算方法。 2.除数函数d(n) 正整数的正因数的个数称为除数函数,记为d(n)。这里给出d(n)的计算公式: d(n)=,为素数唯一分解定理中的指数。为了叙述地更加明确,我们组出素数唯一分解定理。 算术基本定理(素数唯一分解定理):任何一大于1的整数均可以分解为素数的乘积,若不考虑素数乘积的先后顺序,则分解式是唯一的。 例如:。当一个整数分解成素数的乘积时,其中有些素数可以重复出现。例如在上面的分解式中,2出现了三次。把分解式中相同的素数的积写成幂的形式,我们就可以把大于1的正整数写成 (1) 此式称为的标准分解式。这样,算术基本定理也可以描述为大于1的整数的标准分解式是唯一的(不考虑乘积的先后顺序)。 推论1.若的标准分解式是(1)式,则是的正因数的充要条件是: (2) 应说明(2)不能称为是的标准分解式,,其原因是其中的某些可能取零值(也有可能不含有某个素因数,因而) 推论2.设,且,若 |