同余(数论基础)

同余是数论中的基本概念,它描述了两个整数除以同一个正整数后余数相等的性质。同余关系在密码学、计算机科学等领域有广泛应用,例如RSA算法中的模运算。理解同余有助于深入探讨素数分布、模算术等数论问题。
摘要由CSDN通过智能技术生成
同余
 
 
 
 
<script type="text/javascript"> showElementsTop(0); </script>
 

  同余式性质应用非常广泛,在处理某些整除性、进位制、对整数分类、解不定方程等方面的问题中有着不可替代的功能,与之密切相关的的数论定理有欧拉定理、费尔马定理和中国剩余定理。

基础知识

三个数论函数

对于任何正整数均有定义的函数,称为数论函数。在初等数论中,所能用到的无非也就有三个,分别为:高斯(Gauss)取整函数[x]及其性质,除数函数d(n)和欧拉(Euler)函数和它的计算公式。

1.  高斯(Gauss)取整函数[]

是实数,不大于的最大整数称为的整数部分,记为[];称为的小数部分,记为{}。例如:[0.5]=0,等等。

的定义可得如下性质:

性质1.

性质2.

性质3.设,则

性质4.;;

性质5. 

性质6.对于任意的正整数,都有如下的埃米特恒等式成立:

   

为了描述性质7,我们给出如下记号:若,且 ,则称为恰好整除,记为。例如:我们有等等,其实,由整数唯一分解定理:任何大于1的整数能唯一地写成的形式,其中为质(素)数()。我们还可以得到:

性质7.,则

   请注意,此式虽然被写成了无限的形式,但实际上对于固定的,必存在正整数,使得,因而,故,而且对于时,都有。因此,上式实际上是有限项的和。另外,此式也指出了乘数的标准分解式中,素因数的指数的计算方法。

2.除数函数d(n)

正整数的正因数的个数称为除数函数,记为d(n)。这里给出d(n)的计算公式:

d(n)为素数唯一分解定理中的指数。为了叙述地更加明确,我们组出素数唯一分解定理。

算术基本定理(素数唯一分解定理):任何一大于1的整数均可以分解为素数的乘积,若不考虑素数乘积的先后顺序,则分解式是唯一的。

例如:。当一个整数分解成素数的乘积时,其中有些素数可以重复出现。例如在上面的分解式中,2出现了三次。把分解式中相同的素数的积写成幂的形式,我们就可以把大于1的正整数写成   (1

此式称为的标准分解式。这样,算术基本定理也可以描述为大于1的整数的标准分解式是唯一的(不考虑乘积的先后顺序)。

  推论1.若的标准分解式是(1)式,则的正因数的充要条件是:

    (2

应说明(2)不能称为是的标准分解式,,其原因是其中的某些可能取零值(也有可能不含有某个素因数,因而

推论2.,且,若

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值