国密(国产密码)SM2、SM3、SM4 C#实现

      参考:http://www.voidcn.com/article/p-zlnqwzbd-cm.html

      这两天与联通对接流量卡实名相关接口。他们用到了国密SM3,一个比较冷门的加密(或者说是签名)方式。顺带我也了解了下SM2、SM3、SM4:本文只做了SM2、SM3、SM4 代码补充

      国产密码算法(国密算法)是指国家密码局认定的国产商用密码算法,在金融领域目前主要使用公开的SM2、SM3、SM4三类算法,分别是非对称算法、哈希算法和对称算法。      

SM1对称密码

SM1 算法是分组密码算法,分组长度为128位,密钥长度都为 128 比特,算法安全保密强度及相关软硬件实现性能与 AES 相当,算法不公开,仅以IP核的形式存在于芯片中。
采用该算法已经研制了系列芯片、智能IC卡、智能密码钥匙、加密卡、加密机等安全产品,广泛应用于电子政务、电子商务及国民经济的各个应用领域(包括国家政务通、警务通等重要领域)。

SM2椭圆曲线公钥密码算法

SM2算法就是ECC椭圆曲线密码机制,但在签名、密钥交换方面不同于ECDSA、ECDH等国际标准,而是采取了更为安全的机制。另外,SM2推荐了一条256位的曲线作为标准曲线。
SM2标准包括总则,数字签名算法,密钥交换协议,公钥加密算法四个部分,并在每个部分的附录详细说明了实现的相关细节及示例。
SM2算法主要考虑素域Fp和F2m上的椭圆曲线,分别介绍了这两类域的表示,运算,以及域上的椭圆曲线的点的表示,运算和多倍点计算算法。然后介绍了编程语言中的数据转换,包括整数和字节串,字节串和比特串,域元素和比特串,域元素和整数,点和字节串之间的数据转换规则。详细说明了有限域上椭圆曲线的参数生成以及验证,椭圆曲线的参数包括有限域的选取、椭圆曲线方程参数、椭圆曲线群基点的选取等,并给出了选取的标准以便于验证。最后给椭圆曲线上密钥对的生成以及公钥的验证,用户的密钥对为(s,sP),其中s为用户的私钥,sP为用户的公钥,由于离散对数问题从sP难以得到s,并针对素域和二元扩域给出了密钥对生成细节和验证方式。总则中的知识也适用于SM9算法。
在总则的基础上给出了数字签名算法(包括数字签名生成算法和验证算法),密钥交换协议以及公钥加密算法(包括加密算法和解密算法),并在每个部分给出了算法描述,算法流程和相关示例。
数字签名算法、密钥交换协议以及公钥加密算法都使用了国家密管理局批准的SM3密码杂凑算法和随机数发生器。数字签名算法、密钥交换协议以及公钥加密算法根据总则来选取有限域和椭圆曲线,并生成密钥对。

SM2算法在很多方面都优于RSA算法。

SM3杂凑算法

SM3密码杂凑(哈希、散列)算法给出了杂凑函数算法的计算方法和计算步骤,并给出了运算示例。此算法适用于商用密码应用中的数字签名和验证,消息认证码的生成与验证以及随机数的生成,可满足多种密码应用的安全需求。在SM2,SM9标准中使用。
此算法对输入长度小于2的64次方的比特消息,经过填充和迭代压缩,生成长度为256比特的杂凑值,其中使用了异或,模,模加,移位,与,或,非运算,由填充,迭代过程,消息扩展和压缩函数所构成。具体算法及运算示例见SM3标准。

SM4对称算法

此算法是一个分组算法,用于无线局域网产品。该算法的分组长度为128比特,密钥长度为128比特。加密算法与密钥扩展算法都采用32轮非线性迭代结构。解密算法与加密算法的结构相同,只是轮密钥的使用顺序相反,解密轮密钥是加密轮密钥的逆序。
此算法采用非线性迭代结构,每次迭代由一个轮函数给出,其中轮函数由一个非线性变换和线性变换复合而成,非线性变换由S盒所给出。其中rki为轮密钥,合成置换T组成轮函数。轮密钥的产生与上图流程类似,由加密密钥作为输入生成,轮函数中的线性变换不同,还有些参数的区别。SM4算法的具体描述和示例见SM4标准。

SM7对称密码

SM7算法,是一种分组密码算法,分组长度为128比特,密钥长度为128比特。SM7适用于非接触式IC卡,应用包括身份识别类应用(门禁卡、工作证、参赛证),票务类应用(大型赛事门票、展会门票),支付与通卡类应用(积分消费卡、校园一卡通、企业一卡通等)。

SM9标识密码算法

为了降低公开密钥系统中密钥和证书管理的复杂性,以色列科学家、RSA算法发明人之一Adi Shamir在1984年提出了标识密码(Identity-Based Cryptography)的理念。标识密码将用户的标识(如邮件地址、手机号码、QQ号码等)作为公钥,省略了交换数字证书和公钥过程,使得安全系统变得易于部署和管理,非常适合端对端离线安全通讯、云端数据加密、基于属性加密、基于策略加密的各种场合。2008年标识密码算法正式获得国家密码管理局颁发的商密算法型号:SM9(商密九号算法),为我国标识密码技术的应用奠定了坚实的基础。
SM9算法不需要申请数字证书,适用于互联网应用的各种新兴应用的安全保障。如基于云技术的密码服务、电子邮件安全、智能终端保护、物联网安全、云存储安全等等。这些安全应用可采用手机号码或邮件地址作为公钥,实现数据加密、身份认证、通话加密、通道加密等安全应用,并具有使用方便,易于部署的特点,从而开启了普及密码算法的大门。

ZUC祖冲之算法

祖冲之序列密码算法是中国自主研究的流密码算法,是运用于移动通信4G网络中的国际标准密码算法,该算法包括祖冲之算法(ZUC)、加密算法(128-EEA3)和完整性算法(128-EIA3)三个部分。目前已有对ZUC算法的优化实现,有专门针对128-EEA3和128-EIA3的硬件实现与优化。

入正题

首先需要引用 BouncyCastle.Crypto.dll(.netcore 或者 stander 需要引入BouncyCastle.Crypto 的 NuGet包)

一、SM2  

SM2主类

using System;
using Org.BouncyCastle.Crypto.Generators;
using Org.BouncyCastle.Math.EC;
using Org.BouncyCastle.Math;
using Org.BouncyCastle.Crypto;
using Org.BouncyCastle.Crypto.Parameters;
using Org.BouncyCastle.Security;
using System.Text;

namespace Com.Mlq.SM
{
	
	public class SM2
	{
		public static SM2 Instance
		{
			get
			{
				return new SM2();
			}
			
		}
		public static SM2 InstanceTest
		{
			get
			{
				return new SM2();
			}
			
		}

        public static readonly string[] sm2_param = {
			"FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFF",// p,0
			"FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFC",// a,1
			"28E9FA9E9D9F5E344D5A9E4BCF6509A7F39789F515AB8F92DDBCBD414D940E93",// b,2
			"FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFF7203DF6B21C6052B53BBF40939D54123",// n,3
			"32C4AE2C1F1981195F9904466A39C9948FE30BBFF2660BE1715A4589334C74C7",// gx,4
			"BC3736A2F4F6779C59BDCEE36B692153D0A9877CC62A474002DF32E52139F0A0" // gy,5
	    };

        public string[] ecc_param = sm2_param;
		
		public readonly BigInteger ecc_p;
		public readonly BigInteger ecc_a;
		public readonly BigInteger ecc_b;
		public readonly BigInteger ecc_n;
		public readonly BigInteger ecc_gx;
		public readonly BigInteger ecc_gy;
		
		public readonly ECCurve ecc_curve;
		public readonly ECPoint ecc_point_g;
		
		public readonly ECDomainParameters ecc_bc_spec;
		
		public readonly ECKeyPairGenerator ecc_key_pair_generator;

        private SM2()
		{
			ecc_param = sm2_param;

            ECFieldElement ecc_gx_fieldelement;
			ECFieldElement ecc_gy_fieldelement;
			
			ecc_p = new BigInteger(ecc_param[0], 16);
			ecc_a = new BigInteger(ecc_param[1], 16);
			ecc_b = new BigInteger(ecc_param[2], 16);
			ecc_n = new BigInteger(ecc_param[3], 16);
			ecc_gx = new BigInteger(ecc_param[4], 16);
			ecc_gy = new BigInteger(ecc_param[5], 16);


            ecc_gx_fieldelement = new FpFieldElement(ecc_p, ecc_gx);
            ecc_gy_fieldelement = new FpFieldElement(ecc_p, ecc_gy);

            ecc_curve = new FpCurve(ecc_p, ecc_a, ecc_b);
            ecc_point_g = new FpPoint(ecc_curve, ecc_gx_fieldelement, ecc_gy_fieldelement);
			
			ecc_bc_spec = new ECDomainParameters(ecc_curve, ecc_point_g, ecc_n);
			
			ECKeyGenerationParameters ecc_ecgenparam;
            ecc_ecgenparam = new ECKeyGenerationParameters(ecc_bc_spec, new SecureRandom());
			
			ecc_key_pair_generator = new ECKeyPairGenerator();
			ecc_key_pair_generator.Init(ecc_ecgenparam);
		}

        public virtual byte[] Sm2GetZ(byte[] userId, ECPoint userKey)
		{
			SM3Digest sm3 = new SM3Digest();
			byte[] p;
			// userId length
			int len = userId.Length * 8;
			sm3.Update((byte) (len >> 8 & 0x00ff));
			sm3.Update((byte) (len & 0x00ff));
			
			// userId
            sm3.BlockUpdate(userId, 0, userId.Length);
			
			// a,b
			p = ecc_a.ToByteArray();
            sm3.BlockUpdate(p, 0, p.Length);
            p = ecc_b.ToByteArray();
            sm3.BlockUpdate(p, 0, p.Length);
			// gx,gy
            p = ecc_gx.ToByteArray();
            sm3.BlockUpdate(p, 0, p.Length);
            p = ecc_gy.ToByteArray();
            sm3.BlockUpdate(p, 0, p.Length);
			
			// x,y
            p = userKey.X.ToBigInteger().ToByteArray();
            sm3.BlockUpdate(p, 0, p.Length);
            p = userKey.Y.ToBigInteger().ToByteArray();
            sm3.BlockUpdate(p, 0, p.Length);
			
			// Z
			byte[] md = new byte[sm3.GetDigestSize()];
			sm3.DoFinal(md, 0);
			
			return md;
		}
		
	}
}

SM2工具类:

using Com.Mlq.SM;
using Org.BouncyCastle.Crypto;
using Org.BouncyCastle.Crypto.Parameters;
using Org.BouncyCastle.Math;
using Org.BouncyCastle.Math.EC;
using Org.BouncyCastle.Utilities.Encoders;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace Com.Mlq.SM
{
    class SM2Utils
    {
        public static void GenerateKeyPair()
        {
            SM2 sm2 = SM2.Instance;
            AsymmetricCipherKeyPair key = sm2.ecc_key_pair_g
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值