Python 开发者的 6 个必备库

无论你是正在使用 Python 进行快速开发,还是在为 Python 桌面应用制作原生 UI ,或者是在优化现有的 Python 代码,以下这些 Python 项目都是应该使用的。


Python 凭借其易用的特点,已经被工业界和学术界广泛采用。另一方面,Python 丰富的第三方项目——库、附加组件,和辅助的开发成果——使得 Python 语言的应用范围被不断扩大。


其中一些项目,比如 PyInstaller 和 WxPython ,为那些制作桌面应用和终端应用的 Python 开发者提供了便利。其他的项目, 比如 PyPy , 则是用来给服务器端 Python 应用提供额外的动力。还有一些,像  PBR 、CFFI 和 MyPy , 适用于差不多所有五花八门的 Python 应用,无论在什么地方运行。


如果你是一个 Python 开发者,所有这六个项目都值得你来熟悉一下。而且所有这些项目,在近几周都发布了新的主要版本。


Python 必备之 PyPy


PyPy 主要用于何处?


如果你需要更快的 Python 应用程序,最简单的实现的方法就是通过 PyPy ,Python 运行时与实时(JIT)编译器。与使用普通的 Python 对等程序相比,使用 PyPy 的 Python 应用程序的运行速度平均提升7.5倍。不幸的是,PyPy 与许多 Python 的明星框架并不是很好地兼容。PyPy 5.9 在解决这个问题上取得了重大进展。


PyPy 5.9 的功能


数据科学框架 NumPy 和 Pandas 现在运行在 PyPy 的 Python 2.7 兼容版本上。这些框架的大部分问题来源于 PyPy 与现有 C 代码的接口。为了解决这个问题,PyPy 5.9 对 CFFI 库(见下文)和 PyPy 的 Python  C API 兼容性层进行了改进。


此外,在 5.9 发布版本中,PyPy 的 JSON 解析器在处理多种 JSON 对象,尤其是那些重复使用的相同的词典键值时,明显更快。


何处下载 PyPy 5.9


你可以直接从 PyPy 的网站下载二进制版本。官方二进制文件包括 Windows、Mac OS 和 Linux 的不同 CPU 架构。请注意,为了兼容 Python 2.7 和 Python 3.5 ,存在不同的二进制文件,因此请确保你正在获取与你将要运行的脚本所匹配的版本。


BitBucket 上有源代码和错误跟踪记录。


Python 必备之 CFFI


CFFI 主要用于何处? C 外部函数接口库(CFFI)为 Python 应用程序与独立 C 库的交互提供了一种机制。虽然 Python 的 stock 版本,CPython,也拥有自己的库来完成此类功能,称为 Ctypes ,但对 Python 用户来说,比起 Ctypes ,CFFI 使得与 C 库的交互更容易、更简便。


CFFI 1.11 的功能与 PyPy 一起更新的 CFFI v1.11 增加了很小但很有用的改动。现在可以在即将发布的 Python 3.7 上使用betas了,在 Windows 上更好地支持外部错误处理,并支持 C 语言中更多的现代标准类型,例如 float/double _Complex 和 char16_t和char_32t 类型。最后两个也是最重要的,在 C 库中默认使用 Unicode 编码。


何处下载 CFFI 1.11 ?


CFFI 在 Python Package Index 上可以单独下载,或通过 Python 的 pip 工具安装:pip install cffi 。源码和问题跟踪可以在 BitBucket 上找到。


Python 必备之 PyInstaller


PyInstaller 主要用于何处?关于 Python 的最常见的问题之一是“如何从 Python 脚本中生成独立的可执行文件?” PyInstaller 一直是对此最好的答案之一。


PyInstaller 3.3 的功能PyInstaller 将 Python 应用程序打包到单目录或单文件的可执行文件中,捆绑任何所需的第三方库,并可与绝大多数常见的库和框架配合使用。


PyInstaller 3.3 中最大的改进是对 Python 3.6 的支持,因为鉴于 Python 3.6 已经发布这确实是必要的


PyInstaller 3.3 还包括一个更广泛兼容的引导加载程序,适用于 Windows 可执行文件,并扩展了对捆绑常见库(如 QT、GTK +、NumPy 和 Django )的支持。


PyInstaller 在不久之后可能添加的一个功能是交叉打包,例如,在 Windows 上创建 Mac 兼容的应用程序。你需要在要部署的同一平台上运行该 PyInstaller ,无论是 Windows、Mac 还是 Linux 。


何处下载 PyInstaller 3.3 ?


PyInstaller 可以通过 Python Package Index 安装,也可通过 Python 的 pip 工具安装:pip install pyinstaller 。对于那些需要自己编译引导加载程序的人,源码可以在 GitHub 上找到,但对多数人而言是不需要这么做的。


Python必备之Python Build Reasonableness


Python PBR 主要用于何处?


Setuptools 是用于打包 Python 项目的标准的 Python 问题子系统。管理特定项目的 Setuptools 可能会变得非常繁琐,特别是在自动生成需求、管理文档文件或编辑项目贡献者数据时。


Python PBR 的功能PBR, Python Build Reasonableness 的缩写,是以一致的方式用于管理 Setuptools 包的库。它可以自动化许多 Setuptools 打包的设置,例如版本号、生成作者和 ChangeLog 文件,以及生成 Sphinx 风格的文档。PBR 最初是作为 OpenStack 项目的一部分开发的,但现在你所使用 PBR 中维护的内容与 OpenStack 已经没有任何联系了。


哪里可以下载 Python PBR ?


PBR 在 Python Package Index 上可以找到,并且可以和 pip 一起安装,只需要输入 pip install pbr 即可。 源码可在 GitHub 上下载。


Python 必备之 WxPython


WxPython 主要用于何处?想要实现跨平台桌面应用程序的 Python 开发人员可以从多个工具包中进行选择。 WxPython,是 WxWidgets 库的一个封装,使用了其所支持主机平台的原生 UI 元素,包括 Windows、Mac、Linux 和其他类 Unix 操作系统。


WxPython 4.0 的功能早期版本的 WxPython 被放弃了是由于其传统的设计决策,使其变得越来越慢,而且不太适合使用。为了解决这个问题,WxPython 的开发人员对 WxPython 的 4.0 分支做了重大改变。


目标是允许开发人员更快地上手 WxPython ,并且使通过它创建的框架和应用程序更加高性能和易维护。然而,为了使用 WxPython 4.0 ,任何现有的使用 WxPython 项目都需要修改。


何处可以下载 WxPython 4.0 ?WxPython 4.0 官方版本依然是 beta 版。它可以在 Python Package Index 上找到,即通过 pip install wxpython 命令。在正式发布前它可能会更新数次,注意经常检查更新。


那些想直接破解的人可以查看 GitHub 上的代码库。请注意,WxPython 的 4.0 分支以 “Phoenix” 代号进行标记的,以使其与早期版本不同。


Python 必备之 Mypy


Mypy 主要用于何处?Python 的动态性既是一种福音,也是一种烦恼,对于快速构建软件非常棒,但是当代码难以推理、测试和调试时,并不是很棒。Mypy 在编译时向 Python 添加静态类型检查,使 Python 程序更加一致和可维护,并且不会增加运行时开销。


Mypy 0.530 的功能Mypy 0.530 添加了不同协议的支持,该协议是用于 Python 子类的目前实验性类型的功能。它还在仅用于包含特定类型的对象的字典中添加 “TypedDict” 类型,并且可以逐个对文件进行更严格的类型检查的选项。


 End 

阅读排行榜/精华推荐1 入门学习

如果有人质疑大数据?不妨把这两个视频转给他 

视频:大数据到底是什么 都说干大数据挣钱 1分钟告诉你都在干什么

人人都需要知道 关于大数据最常见的10个问题

2 进阶修炼

从底层到应用,那些数据人的必备技能

如何高效地学好 R?

一个程序员怎样才算精通Python?

3 数据源爬取/收集

排名前50的开源Web爬虫用于数据挖掘

33款可用来抓数据的开源爬虫软件工具

在中国我们如何收集数据?全球数据收集大教程

4 干货教程

PPT:数据可视化,到底该用什么软件来展示数据?

干货|电信运营商数据价值跨行业运营的现状与思考

大数据分析的集中化之路 建设银行大数据应用实践PPT

【实战PPT】看工商银行如何利用大数据洞察客户心声?              

六步,让你用Excel做出强大漂亮的数据地图

 数据商业的崛起 解密中国大数据第一股——国双

双11剁手幕后的阿里“黑科技” OceanBase/金融云架构/ODPS/dataV

金融行业大数据用户画像实践


讲述大数据在金融、电信、工业、商业、电子商务、网络游戏、移动互联网等多个领域的应用,以中立、客观、专业、可信赖的态度,多层次、多维度地影响着最广泛的大数据人群

36大数据

长按识别二维码,关注36大数据


搜索「36大数据」或输入36dsj.com查看更多内容。

投稿/商务/合作:dashuju36@qq.com


点击下方“阅读原文”查看更多

↓↓↓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值