立体对应点分类与特定地理位置 PM2.5 浓度估计研究
1. 立体对应点分类
1.1 关键点计算运行时间对比
在立体对应点分类中,对使用 SIFT、FAST、SURF 和 GFTT 计算关键点的运行时间进行了统计,具体数据如下表所示:
| 数据集 | SIFT | SURF | FAST | GFTT |
| — | — | — | — | — |
| Art | 0.43 | 0.37 | 0.25 | 0.31 |
| Books | 0.36 | 0.43 | 0.23 | 0.32 |
| Cones | 0.46 | 0.49 | 0.24 | 0.32 |
| Dolls | 0.52 | 0.45 | 0.27 | 0.35 |
| Laundry | 0.43 | 0.40 | 0.25 | 0.32 |
| Moebius | 0.39 | 0.33 | 0.26 | 0.33 |
| Reindeer | 0.33 | 0.37 | 0.38 | 0.33 |
| Teddy | 0.37 | 0.34 | 0.24 | 0.43 |
从表中可以看出,除了 Reindeer 数据集外,FAST 算法的运行时间通常比其他算法更短。
1.2 对应点分类方法
提出了一种基于约束 Delaunay 三角剖分的估计对应点分类方法,该方法考虑到对应点受图像内容的约束。通过图同构来制定三个限制条件:邻接性、基数和对象边界。当且仅当两个图同构时,估计的对应点才被分类为正确估计。
超级会员免费看
订阅专栏 解锁全文
1908

被折叠的 条评论
为什么被折叠?



