描述
ben和mei在做一个项目。现在他们遇到了一个难题,需要你的帮助。问题可以抽象为,给定两个整型数串,求它们的最长公共子序列。最长公共子序列的定义是,一个数列 S ,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 S 称为已知序列的最长公共子序列。
输入
输入包含多组测试数据,每组数据首先包含一个N和一个M,分别表示两个整型串的长度,接下来是两行数据,分别有N个和M个整数(0<N<1000, 0<M<1000)。
输出
对每组数据,请输出它们最长公共子序列的长度。
样例输入
7 8
1 3 4 6 7 5 4
1 6 3 4 8 7 5 6
8 7
1 2 3 1 2 3 1 2
1 3 2 3 2 3 2
样例输出
5
6
用f(x,y)表示A的前x个字符组成的子序列和B的前y个字符组成的子序列的最长公共子序列,设Z为A,B的最长公共子序列。
递推解为:
if (x==0&&y==0) //序列为空时,长度为0
f(x,y)=0;
else if (A(x)==B(y)) //设此时Z长度为i,则Z(i-1)必然是A(x-1)和B(y-1)的最长公共子序列。
f(x,y)=f(x-1,y-1)+1
else f(x,y)=max(f(x-1,y),f(x,y-1))//设此时Z长度为i,则Z(i-1)是A(x-1)和B(y) 或者A(x)和B(y-1)的最长公共子序列
#include <iostream>
using namespace std;
#define MAX 1003
int matrix[MAX][MAX];
int list1[MAX],list2[MAX];
int max(int a,int b){
if (a>=b)
return a;
return b;
}
void LCS(int n,int m){
int i,j;
for (i=1;i<n;i++)
matrix[i][0]=0;
for (i=1;i<m;i++)
matrix[0][i]=0;
for (i=1;i<=n;i++)
for (j=1;j<=m;j++){
if (list1[i]==list2[j])
matrix[i][j]=matrix[i-1][j-1]+1;
else matrix[i][j]=max(matrix[i-1][j],matrix[i][j-1]);
}
return ;
}
int main(){
int n,m,i;
while (scanf("%d%d",&n,&m)!=EOF){
for (i=1;i<=n;i++)
scanf("%d",&list1[i]);
for (i=1;i<=m;i++)
scanf("%d",&list2[i]);
LCS(n,m);
printf("%d\n",matrix[n][m]);
}
return 0;
}