最长公共子序列 bjfu1003 动态规划

描述

ben和mei在做一个项目。现在他们遇到了一个难题,需要你的帮助。问题可以抽象为,给定两个整型数串,求它们的最长公共子序列。最长公共子序列的定义是,一个数列 S ,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 S 称为已知序列的最长公共子序列。

输入

输入包含多组测试数据,每组数据首先包含一个N和一个M,分别表示两个整型串的长度,接下来是两行数据,分别有N个和M个整数(0<N<1000, 0<M<1000)。

输出

对每组数据,请输出它们最长公共子序列的长度。

样例输入

7 8
1 3 4 6 7 5 4
1 6 3 4 8 7 5 6
8 7
1 2 3 1 2 3 1 2
1 3 2 3 2 3 2

样例输出

5
6

用f(x,y)表示A的前x个字符组成的子序列和B的前y个字符组成的子序列的最长公共子序列,设Z为A,B的最长公共子序列。

递推解为:

if (x==0&&y==0)  //序列为空时,长度为0

f(x,y)=0;

else if (A(x)==B(y)) //设此时Z长度为i,则Z(i-1)必然是A(x-1)和B(y-1)的最长公共子序列。

f(x,y)=f(x-1,y-1)+1

else f(x,y)=max(f(x-1,y),f(x,y-1))//设此时Z长度为i,则Z(i-1)是A(x-1)和B(y) 或者A(x)和B(y-1)的最长公共子序列

#include <iostream>
using namespace std;
#define MAX 1003
int matrix[MAX][MAX];
int list1[MAX],list2[MAX];

int max(int a,int b){
	if (a>=b)
		return a;
	return b;
}

void LCS(int n,int m){
	int i,j;
	for (i=1;i<n;i++)
		matrix[i][0]=0;
	for (i=1;i<m;i++)
		matrix[0][i]=0;
	for (i=1;i<=n;i++)
		for (j=1;j<=m;j++){
			if (list1[i]==list2[j])
				matrix[i][j]=matrix[i-1][j-1]+1;
			else matrix[i][j]=max(matrix[i-1][j],matrix[i][j-1]);
		}
	return ;
}

int main(){
	int n,m,i;
	while (scanf("%d%d",&n,&m)!=EOF){
		for (i=1;i<=n;i++)
			scanf("%d",&list1[i]);
		for (i=1;i<=m;i++)
			scanf("%d",&list2[i]);
		LCS(n,m);
		printf("%d\n",matrix[n][m]);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值