###### poj2553The Bottom of a Graph(强连通+缩点)

The Bottom of a Graph
 Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 7699 Accepted: 3161

Description

We will use the following (standard) definitions from graph theory. Let V be a nonempty and finite set, its elements being called vertices (or nodes). Let E be a subset of the Cartesian product V×V, its elements being called edges. Then G=(V,E) is called a directed graph.
Let n be a positive integer, and let p=(e1,...,en) be a sequence of length n of edges ei∈E such that ei=(vi,vi+1) for a sequence of vertices (v1,...,vn+1). Then p is called a path from vertex v1 to vertex vn+1 in G and we say that vn+1 is reachable from v1, writing (v1→vn+1)
Here are some new definitions. A node v in a graph G=(V,E) is called a sink, if for every node w in G that is reachable from vv is also reachable from w. The bottom of a graph is the subset of all nodes that are sinks, i.e.,bottom(G)={v∈V|∀w∈V:(v→w)⇒(w→v)}. You have to calculate the bottom of certain graphs.

Input

The input contains several test cases, each of which corresponds to a directed graph G. Each test case starts with an integer number v, denoting the number of vertices of G=(V,E), where the vertices will be identified by the integer numbers in the set V={1,...,v}. You may assume that 1<=v<=5000. That is followed by a non-negative integer e and, thereafter, e pairs of vertex identifiers v1,w1,...,ve,we with the meaning that (vi,wi)∈E. There are no edges other than specified by these pairs. The last test case is followed by a zero.

Output

For each test case output the bottom of the specified graph on a single line. To this end, print the numbers of all nodes that are sinks in sorted order separated by a single space character. If the bottom is empty, print an empty line.

Sample Input

3 3
1 3 2 3 3 1
2 1
1 2
0


Sample Output

1 3
2


Source

#include <iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 5005;
const int M = 1000005;
struct edge
{
int to,next;
}g[M];
int scc[N];
int stack1[N];
int stack2[N];
int out[N];
int vis[N];
int ans[N];
int n,m;

void init()
{
for(int i = 1;i <= n;i ++)
{
scc[i] = out[i] = vis[i] = 0;
}
}

void dfs(int cur,int &sig,int &ret)
{
vis[cur] = ++ sig;
stack1[++stack1[0]] = cur;
stack2[++stack2[0]] = cur;
for(int i = head[cur];i != -1;i = g[i].next)
{
if(vis[g[i].to] == 0)
dfs(g[i].to,sig,ret);
else
if(scc[g[i].to] == 0)
{
while(vis[stack2[stack2[0]]] > vis[g[i].to])
stack2[0] --;
}
}
if(stack2[stack2[0]] == cur)
{
++ret;
stack2[0] --;
do
{
scc[stack1[stack1[0]]] = ret;
}while(stack1[stack1[0] --] != cur);
}
}

int Gabow()
{
int i,sig,ret;
stack1[0] = stack2[0] = sig = ret = 0;
for(i = 1;i <= n;i ++)
if(!vis[i])
dfs(i,sig,ret);
return ret;
}

void solve()
{
int i,j,num;
num = Gabow();
if(num == 1)
{
for(i = 1;i < n;i ++)
printf("%d ",i);
printf("%d\n",i);
return;
}
for(i = 1;i <= n;i ++)
{
for(j = head[i];j != -1;j = g[j].next)
{
if(scc[i] != scc[g[j].to])
out[scc[i]] ++;
}
}
int ansnum = 0;
for(i = 1;i <= num;i ++)
{
if(out[i] == 0)
{
for(j = 1;j <= n;j ++)
if(scc[j] == i)
ans[ansnum ++] = j;
}
}
sort(ans,ans + ansnum);
for(i = 0;i < ansnum - 1;i ++)
printf("%d ",ans[i]);
printf("%d\n",ans[i]);
}

int nextint()
{
char c;
int ret;
while((c = getchar()) > '9' || c < '0')
;
ret = c - '0';
while((c = getchar()) >= '0' && c <= '9')
ret = ret * 10 + c - '0';
return ret;
}
int main()
{
int i,j,a,b;
while(n = nextint(),n)
{
m = nextint();
init();
for(i = 1;i <= m;i ++)
{
a = nextint();
b = nextint();
g[i].to = b;
}
solve();
}
return 0;
}
//996K	110MS


#### poj2553The Bottom of a Graph

2018-01-31 15:22:55

#### poj2553The Bottom of a Graph【scc+缩点】

2015-11-20 19:23:30

#### hdu 5934（强连通缩点）

2016-10-29 20:43:55

#### 【连通图|强连通+缩点】POJ-2553 The Bottom of a Graph

2015-01-31 23:36:30

#### bzoj 1179（tarjan缩点+最长路）

2017-07-30 14:12:10

#### 强连通分量+缩点（记录所缩点的个数）

2014-06-29 17:19:06

#### poj2553 - The Bottom of a Graph

2012-08-22 10:50:46

#### poj2553 The Bottom of a Graph【强连通】

2017-07-24 13:54:17

#### Trajan算法（强连通+缩点）

2016-08-12 18:19:51

#### 【POJ】The Bottom of a Graph 强连通

2014-07-07 21:09:31

## 不良信息举报

poj2553The Bottom of a Graph(强连通+缩点)