深入理解 keras 中 Dense 层参数

引言

大家或许已经对深度学习不陌生了。不管是养家糊口工作还是科研学习早日毕业,为了生活,我们可能不得不去深入理解深度学习方面的知识。对于现成的深度学习框架,已经有很多教程,一般都是再强调用法,却很少有理论与实战结合的示例。
在此,我们将抛砖引玉,记录一些关于 keras 中 Dense 层的简单使用。

深入理解 Dense 层的用法

keras.layers.Dense(units, activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None)

Dense layer 就是常提到和用到的全连接层 。Dense 实现的操作为:output = activation(dot(input, kernel) + bias) 其中 activation 是按逐个元素计算的激活函数,kernel 是由网络层创建的权值矩阵,以及 bias 是其创建的偏置向量 (只在 use_bias=True 时才有用)。

注意: 如果该层的输入的秩大于2,那么它首先被展平然后 再计算与 kernel 的点乘。

查看参数

units: 正整数,输出空间维度。
activation: 激活函数 (详见 activations)。 若不指定,则不使用激活函数 (即,「线性」激活: a(x) = x)。
use_bias: 布尔值,该层是否使用偏置向量。
kernel_initializer: kernel 权值矩阵的初始化器 (详见 initializers)。
bias_initializer: 偏置向量的初始化器 (see initializers).
kernel_regularizer: 运用到 kernel 权值矩阵的正则化函数 (详见 regularizer)。
bias_regularizer: 运用到偏置向的的正则化函数 (详见 regularizer)。
activity_regularizer: 运用到层的输出的正则化函数 (它的 "activation")(详见 regularizer)。
kernel_constraint: 运用到 kernel 权值矩阵的约束函数 (详见 constraints)。
bias_constraint: 运用到偏置向量的约束函数 (详见 constraints)

输入尺寸

nD 张量,尺寸: (batch_size, …, input_dim)。 最常见的情况是一个尺寸为 (batch_size, input_dim) 的 2D 输入。

输出尺寸

nD 张量,尺寸: (batch_size, …, units)。 例如,对于尺寸为 (batch_size, input_dim) 的 2D 输入, 输出的尺寸为 (batch_size, units)。

示例:

# 作为 Sequential 模型的第一层,需要指定输入维度。可以为 input_shape=(16,) 或者 input_dim=16,这两者是等价的。
model = Sequential()
model.add(Dense(32, input_shape=(16,)))
# 现在模型就会以尺寸为 (*, 16) 的数组作为输入,
# 其输出数组的尺寸为 (*, 32)

# 在第一层之后,就不再需要指定输入的尺寸了:
model.add(Dense(32))

用法完整示例

示例一: 最小网络

仅有一个参数

import keras
from keras.layers import Dense
model = keras.models.Sequential()
model.add(Dense(1, use_bias=False, input_shape=(1,), name='Dense_ly'))  # 仅有的1个权重在这里
model.compile(loss='mse', optimizer='adam')
# end

model.summary()  # 简单查看网络结构

# 画图查看网络结构
from IPython.display import SVG
from keras.utils.vis_utils import model_to_dot
display(SVG(model_to_dot(model,show_shapes=True).create(prog='dot', format='svg')))

# 创建数据begin
import numpy as np
data_input = np.random.normal(size=1000000).reshape(-1,1)  # 训练数据
data_label = -(data_input)  # 数据标签
# end

print('模型随机权重分配为:%s\n' % (model.layers[0].get_weights()))  # 检查随机初始化的权重大小

model.fit(data_input, data_label)  # 对创建的数据用创建的网络进行训练

print('模型进行预测:%s\n' % (model.predict(np.array([2.5]))))  # 利用训练好的模型进行预测

print('训练完成后权重分配为:%s\n' % (model.layers[0].get_weights()))  # 再次查看训练好的模型中的权重值

示例一运行结果

示例二:多维度数据

多维数据训练,此处为2个变量

import keras
from keras.layers import Dense
model = keras.models.Sequential()
model.add(Dense(1, use_bias=False, input_shape=(2,), name='Dense_ly'))  # 仅有的1个权重在这里
model.compile(loss='mse', optimizer='adam')
# end

model.summary()  # 简单查看网络结构

# 画图查看网络结构
from IPython.display import SVG
from keras.utils.vis_utils import model_to_dot
display(SVG(model_to_dot(model,show_shapes=True).create(prog='dot', format='svg')))

# 创建数据begin
import numpy as np
data_input = np.random.normal(size=1000000).reshape(-1,2)  # 训练数据
data_label = -(data_input[:,1])  # 数据标签。 PS:注意,这里变了。这里预测的标签仅仅是后一个维度的数据哦!
# end

print('模型随机权重分配为:%s\n' % (model.layers[0].get_weights()))  # 检查随机初始化的权重大小

model.fit(data_input, data_label)  # 对创建的数据用创建的网络进行训练

print('模型进行预测:%s\n' % (model.predict(np.array([[2.5, 13.5]]))))  # 利用训练好的模型进行预测。 PS:注意,这里变了

print('训练完成后权重分配为:%s\n' % (model.layers[0].get_weights()))  # 再次查看训练好的模型中的权重值

示例二

示例三:特殊情况,待讨论

这个参数是一个二位矩阵,先留待查看研习

import keras
from keras.layers import Dense
model = keras.models.Sequential()
model.add(Dense(2, use_bias=False, input_shape=(2,), name='Dense_ly'))  # 仅有的1个权重在这里
model.compile(loss='mse', optimizer='adam')
# end

model.summary()  # 简单查看网络结构

# 画图查看网络结构
from IPython.display import SVG
from keras.utils.vis_utils import model_to_dot
display(SVG(model_to_dot(model,show_shapes=True).create(prog='dot', format='svg')))

# 创建数据begin
import numpy as np
data_input = np.random.normal(size=1000000).reshape(-1,2)  # 训练数据
data_label = -(data_input)  # 数据标签。 PS:注意,这里变了
# end

print('模型随机权重分配为:%s\n' % (model.layers[0].get_weights()))  # 检查随机初始化的权重大小

model.fit(data_input, data_label)  # 对创建的数据用创建的网络进行训练

print('模型进行预测:%s\n' % (model.predict(np.array([[2.5, 13.5]]))))  # 利用训练好的模型进行预测。 PS:注意,这里变了

print('训练完成后权重分配为:%s\n' % (model.layers[0].get_weights()))  # 再次查看训练好的模型中的权重值

示例三

附录

配合以下资源食用更香:

  • 60
    点赞
  • 369
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 10
    评论
这段代码是使用Fashion-MNIST数据集训练一个基本的神经网络模型,并使用该模型进行图像分类。如果你想将其转变为图像人脸识别,你需要进行以下步骤: 1. 首先,你需要收集人脸图像数据集。你可以使用已有的人脸数据集,如LFW、CelebA或CASIA等,或者自己收集数据集。 2. 对于人脸图像数据集,你需要进行数据预处理和增强,以提高模型的性能。例如,你可以使用OpenCV或PIL库对图像进行裁剪、缩放、旋转、翻转等操作,以及使用数据增强技术,如随机裁剪、旋转、亮度调整等。 3. 接下来,你需要使用卷积神经网络(CNN)来训练你的人脸识别模型。你可以使用Keras或PyTorch等深度学习框架来实现。 4. 在训练模型之前,你需要将数据集分成训练集、验证集和测试集。训练集用于模型的训练,验证集用于模型的调优,测试集用于评估模型的性能。 5. 接着,你需要定义一个CNN模型,并将其编译。例如,你可以使用多个卷积和池化,以及全连接和输出。 6. 然后,你需要使用训练集来训练模型,并使用验证集来调整模型的超参数。当模型在验证集上的性能不再提高时,就可以停止训练。 7. 最后,你可以使用测试集来评估模型的性能,并进行人脸识别。 需要注意的是,人脸识别是一个复杂的任务,需要深入了解相关知识和技术才能进行。此处提供的步骤只是一个大致的指南,具体实现还需要根据你的具体情况进行调整。
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

或许,这就是梦想吧!

如果对你有用,欢迎打赏。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值