5x2cv配对t检验(5x2cv paired t test)

5x2cv配对t检验(5x2cv paired t test)

5x2cv配对t检验程序,用于比较两个模型的性能

from mlxtend.evaluate import paired_ttest_5x2cv

概述

5x2cv配对t检验(5x2cv paired t test)是一种比较两个模型(分类器或回归器)性能的程序,Dieterich[1]提出了这两个模型,以解决其他方法的缺点,如 重抽样配对t检验(参见配对t检验: paired_ttest_resampled)和 k倍交叉验证配对t检验(参见配对t检验: paired_ttest_kfold_cv)。

为了解释这种方法是如何工作的,让我们考虑估计量(例如,分类器)A和B。此外,我们有一个标记数据集D。在公共保持方法中,我们通常将数据集分成2个部分:训练和测试集。在5x2cv配对t检验(5x2cv paired t test)中,我们重复切分(50%训练和50%测试数据)5次。

在5个迭代中的每一个迭代中,我们将A和B拟合到训练分割中,并在测试分割中评估它们的性能( p A p_A pA p B p_B pB)。然后,我们旋转训练集和测试集(训练集成为测试集,反之亦然)再次计算性能,这导致两个性能差异度量:
p ( 1 ) = p A ( 1 ) − p B ( 1 ) p^{(1)} = p^{(1)}_A - p^{(1)}_B p(1)=pA(1)pB(1)

p ( 2 ) = p A ( 2 ) − p B ( 2 ) . p^{(2)} = p^{(2)}_A - p^{(2)}_B. p(2)=pA(2)pB(2).
然后,我们估计差异的估计均值和方差:
p ‾ = p ( 1 ) + p ( 2 ) 2 \overline{p} = \frac{p^{(1)} + p^{(2)}}{2} p=2p(1)+p(2)

s 2 = ( p ( 1 ) − p ‾ ) 2 + ( p ( 2 ) − p ‾ ) 2 . s^2 = (p^{(1)} - \overline{p})^2 + (p^{(2)} - \overline{p})^2. s2=(p(1)p)2+(p(2)p)2.
计算5次迭代的差异方差,然后用于计算 t统计量(t statistic),如下所示:
t = p 1 ( 1 ) ( 1 / 5 ) ∑ i = 1 5 s i 2 , t = \frac{p_1^{(1)}}{\sqrt{(1/5) \sum_{i=1}^{5}s_i^2}}, t=(1/5)i=15si2 p1(1),
其中 p 1 ( 1 ) p_1^{(1)} p1(1) 是第一次迭代的 p 1 p_1 p1。t 统计量(t statistic) 为在 模型A 和 模型B 具有相同性能的零假设下,假设它近似遵循5个自由度的t分布(t distribution)。使用t统计量,可以计算 p p p 值,并与之前选择的显著性水平进行比较,例如, α = 0.05 α=0.05 α=0.05。如果 p p p 值小于 α α α,我们拒绝零假设,并接受两个模型存在显著差异。

References

  • [1] Dietterich TG (1998) Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms. Neural Comput 10:1895–1923.

例1-5x2cv配对t检验(5x2cv paired t test)

假设我们想要比较两种分类算法,逻辑回归和决策树算法:

from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from mlxtend.data import iris_data
from sklearn.model_selection import train_test_split


X, y = iris_data()
clf1 = LogisticRegression(random_state=1)
clf2 = DecisionTreeClassifier(random_state=1)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=123)

score1 = clf1.fit(X_train, y_train).score(X_test, y_test)
score2 = clf2.fit(X_train, y_train).score(X_test, y_test)

print('Logistic regression accuracy: %.2f%%' % (score1*100))
print('Decision tree accuracy: %.2f%%' % (score2*100))
Logistic regression accuracy: 97.37%
Decision tree accuracy: 94.74%

请注意,由于在重采样过程中产生了新的测试/训练分离,这些精度值不用于配对t测试程序,上述值仅用于直觉。

现在,我们假设显著性阈值 α = 0.05 α=0.05 α=0.05,以拒绝两种算法在数据集上表现相同的无效假设,并进行5x2cv t检验(5x2cv t test):

from mlxtend.evaluate import paired_ttest_5x2cv


t, p = paired_ttest_5x2cv(estimator1=clf1,
                          estimator2=clf2,
                          X=X, y=y,
                          random_seed=1)

print('t statistic: %.3f' % t)
print('p value: %.3f' % p)
t statistic: -1.539
p value: 0.184

由于 p > α p > \alpha p>α,我们不能拒绝零假设,并且可以得出结论,两种算法的性能没有显著差异。

虽然通常不建议在不纠正多个假设测试的情况下多次应用统计测试,但让我们来看一个示例,其中决策树算法仅限于生成一个非常简单的决策边界,这将导致相对较差的性能:

clf2 = DecisionTreeClassifier(random_state=1, max_depth=1)

score2 = clf2.fit(X_train, y_train).score(X_test, y_test)
print('Decision tree accuracy: %.2f%%' % (score2*100))


t, p = paired_ttest_5x2cv(estimator1=clf1,
                          estimator2=clf2,
                          X=X, y=y,
                          random_seed=1)

print('t statistic: %.3f' % t)
print('p value: %.3f' % p)
Decision tree accuracy: 63.16%
t statistic: 5.386
p value: 0.003

假设我们在显著性水平 α = 0.05 α=0.05 α=0.05 的情况下进行了该测试,我们可以拒绝两个模型在该数据集上表现相同的无效假设,因为 p p p 值( p < 0.001 p<0.001 p<0.001)小于 α α α

API

paired_ttest_5x2cv(estimator1, estimator2, X, y, scoring=None, random_seed=None)

实施Dieterrich(1998)提出的5x2cv配对t检验,以比较两个模型的性能。

Parameters

  • estimator1 : scikit-learn classifier or regressor

  • estimator2 : scikit-learn classifier or regressor

  • X : {array-like, sparse matrix}, shape = [n_samples, n_features]

    Training vectors, where n_samples is the number of samples and n_features is the number of features.

  • y : array-like, shape = [n_samples]

    Target values.

  • scoring : str, callable, or None (default: None)

    If None (default), uses ‘accuracy’ for sklearn classifiers and ‘r2’ for sklearn regressors. If str, uses a sklearn scoring metric string identifier, for example {accuracy, f1, precision, recall, roc_auc} for classifiers, {‘mean_absolute_error’, ‘mean_squared_error’/‘neg_mean_squared_error’, ‘median_absolute_error’, ‘r2’} for regressors. If a callable object or function is provided, it has to be conform with sklearn’s signature scorer(estimator, X, y); see http://scikit-learn.org/stable/modules/generated/sklearn.metrics.make_scorer.html for more information.

    如果没有(默认),则对sklearn分类器使用“准确性”,对sklearn回归器使用“r2”。如果str使用sklearn评分度量字符串标识符,例如{accurity,f1,precision,recall,roc_auc}作为分类器,{‘mean_absolute_error’,‘mean_squared_error’/‘neg_mean_squared_error’,‘median_absolute_error’,‘r2’}作为回归器。如果提供了一个可调用的对象或函数,它必须符合sklearn的签名“scorer(estimator,X,y)”;看见http://scikit-learn.org/stable/modules/generated/sklearn.metrics.make_scorer.html了解更多信息。

  • random_seed : int or None (default: None)

    Random seed for creating the test/train splits.

    用于创建测试/训练切分的随机种子。

Returns

  • t : float

    The t-statistic

  • pvalue : float

    Two-tailed p-value. If the chosen significance level is larger than the p-value, we reject the null hypothesis and accept that there are significant differences in the two compared models.

    双尾p值。如果选择的显著性水平大于 p p p 值,我们拒绝零假设,并接受两个比较模型存在显著差异。

Examples

For usage examples, please see http://rasbt.github.io/mlxtend/user_guide/evaluate/paired_ttest_5x2cv/

reference

@online{Raschka2021Sep,
author = {Raschka, S.},
title = {{5x2cv paired t test - mlxtend}},
year = {2021},
month = {9},
date = {2021-09-03},
urldate = {2022-03-10},
language = {english},
hyphenation = {english},
note = {[Online; accessed 10. Mar. 2022]},
url = {http://rasbt.github.io/mlxtend/user_guide/evaluate/paired_ttest_5x2cv},
abstract = {{A library consisting of useful tools and extensions for the day-to-day data science tasks.}}
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

或许,这就是梦想吧!

如果对你有用,欢迎打赏。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值