【HDU6029】Graph Theory(贪心+队列)

记录一个菜逼的成长。。

题目链接

题目大意:
T组数据,n个点。
对于编号为2~n的每个点,有两种选择:
1.这个点与之前的所有点连条边。
2.什么边都不连
问给你的这个图是否存在完美匹配。

用队列维护没有被匹配的点
初始只有编号为1的点。
接下来对于每个点
如果选择第2个操作,说明这个点不能主动去匹配,只能被动由其他点来匹配,所以放入队列。
如果选择第一个操作,说明可以去匹配,就将队头元素匹配给它。
如果此时队列为空,则不能匹配,放入队列。
(wa了好多次。。真是尴尬

#include <bits/stdc++.h>
using namespace std;
#define ALL(v) (v).begin(),(v).end()
#define cl(a,b) memset(a,b,sizeof(a))
#define clr clear()
#define pb push_back
#define mp make_pair
#define fi first
#define se second
typedef long long LL;
const LL MOD = 1e9 + 7;
const int maxn = 100000 + 10;
int a[maxn];
int main()
{
    int T;scanf("%d",&T);
    while(T--){
        queue<int>q;
        q.push(1);
        int n;
        scanf("%d",&n);
        for( int i = 2; i <= n; i++ ){
            scanf("%d",a+i);
            if(a[i] == 2)q.push(i);
            else {
                if(!q.empty())q.pop();
                else q.push(i);
            }
        }
        puts(q.empty() ? "Yes" : "No");
    }
    return 0;
}
对于HDU4546问题,还可以使用优先队列(Priority Queue)来解决。以下是使用优先队列的解法思路: 1. 首先,将数组a进行排序,以便后续处理。 2. 创建一个优先队列(最小堆),用于存储组合之和的候选值。 3. 初始化优先队列,将初始情况(即前0个数的组合之和)加入队列。 4. 开始从1到n遍历数组a的元素,对于每个元素a[i],将当前队列中的所有候选值取出,分别加上a[i],然后再将加和的结果作为新的候选值加入队列。 5. 重复步骤4直到遍历完所有元素。 6. 当队列的大小超过k时,将队列中的最小值弹出。 7. 最后,队列中的所有候选值之和即为前k小的组合之和。 以下是使用优先队列解决HDU4546问题的代码示例: ```cpp #include <iostream> #include <vector> #include <queue> #include <functional> using namespace std; int main() { int n, k; cin >> n >> k; vector<int> a(n); for (int i = 0; i < n; i++) { cin >> a[i]; } sort(a.begin(), a.end()); // 对数组a进行排序 priority_queue<long long, vector<long long>, greater<long long>> pq; // 最小堆 pq.push(0); // 初始情况,前0个数的组合之和为0 for (int i = 0; i < n; i++) { long long num = pq.top(); // 取出当前队列中的最小值 pq.pop(); for (int j = i + 1; j <= n; j++) { pq.push(num + a[i]); // 将所有加和结果作为新的候选值加入队列 num += a[i]; } if (pq.size() > k) { pq.pop(); // 当队列大小超过k时,弹出最小值 } } long long sum = 0; while (!pq.empty()) { sum += pq.top(); // 求队列中所有候选值之和 pq.pop(); } cout << sum << endl; return 0; } ``` 使用优先队列的方法可以有效地找到前k小的组合之和,时间复杂度为O(nklog(k))。希望这个解法对你有所帮助!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值