大致四种情况:
A:1 1 平方2 1 三次3 2
1 0 1 1 2 1
poj3070:
即求A的n次方,最后输出【0】【1】;
原理
n个初设小矩阵相乘, 则新得到的矩阵含有Fn ,Fn+1
可 n 个小矩阵 太多了 ----->
通过这个方法 升级,可以提升计算效率 O(log n 以二
为底)
解法二:打表
for(i = 1 ; i<=30 ;i++){
a[1]= (fabc[i-1][1]*fabc[i-1][1] + fabc[i-1][2]*fabc[i-1][3])%10000;
a[2]= (fabc[i-1][1]*fabc[i-1][2] + fabc[i-1][2]*fabc[i-1][4])%10000;
a[3]= (fabc[i-1][3]*fabc[i-1][1] + fabc[i-1][4]*fabc[i-1][3])%10000;
a[4]= (fabc[i-1][3]*fabc[i-1][2] + fabc[i-1][4]*fabc[i-1][4])%10000;
fabc[i][1] = a[1];
/*
一定注意上面的运算 要有个变量代替保存运算结果 ,
fabc 不能直接参与结果的赋值,否者上面的结果一定乱了,
想想看,WA的是不是这里
*/
fabc[i][2] = a[2];
fabc[i][3] = a[3];
fabc[i][4] = a[4];
}
ac:这样就可以利用打好的表 进行任何数的运算了,注意 数的奇偶。
#include<stdio.h>
int fabc[30][5];
int s[5];
int a[5];
int solve( int l , int h ) {
int i,k=0,c;
while(1) {
for( i = 0; 1<<i <= h; i++);
i--;
a[1] = (s[1]*fabc[i][1] + s[2]*fabc[i][3])%10000;
a[2] = (s[1]*fabc[i][2] + s[2]*fabc[i][4])%10000;
a[3] = (s[3]*fabc[i][1] + s[4]*fabc[i][3])%10000;
a[4]= (s[3]*fabc[i][2] + s[4]*fabc[i][4])%10000;
s[1] =a[1];
s[2] = a[2];
s[3] =a[3];
s[4] = a[4];
c = 1<<i;
h = h- c;
/*举个例子: h开始传过来的是10 ,表上的都是2的i次相乘,则循环第一次
去fabc[3][] 代表已经有(2^3)8个初始小矩阵相乘,
还有两个没乘,h = 2进入下次循环,取表fabc[1][] (2^1), h = 0 退
出 为偶数,最后输出偶数的输出形式即可
*/
if(h == 1)return 1;
else if(h == 0) return 0;
}
}
int main() {
int n,i;
fabc[0][4] = 0;
fabc[0][1] = 1;
fabc[0][2] = 1;
fabc[0][3] = 1;
for(i = 1 ; i<=30 ; i++) { //打表
a[1]= (fabc[i-1][1]*fabc[i-1][1] + fabc[i-1][2]*fabc[i-1][3])%10000;
a[2]= (fabc[i-1][1]*fabc[i-1][2] + fabc[i-1][2]*fabc[i-1][4])%10000;
a[3]= (fabc[i-1][3]*fabc[i-1][1] + fabc[i-1][4]*fabc[i-1][3])%10000;
a[4]= (fabc[i-1][3]*fabc[i-1][2] + fabc[i-1][4]*fabc[i-1][4])%10000;
fabc[i][1] = a[1];
fabc[i][2] = a[2];
fabc[i][3] = a[3];
fabc[i][4] = a[4];
}
while(scanf("%d",&n)) {
if(n ==-1)break;
s[1]= s[4] = 1;
s[2]= s[3] = 0;
if(solve(0,n))printf("%d\n",s[1]); //基数
else printf("%d\n",s[2]); //偶数
}
return 0;
}
https://blog.csdn.net/ccf15068475758/article/details/52846726
https://www.cnblogs.com/Konjakmoyu/p/4821044.html
随便看看