N!末尾的0一定是由2*5产生的。
而且2因子的个数一定比5因子的个数多。
所以只需要求N!的5因子的个数。
具体:
求 N! (1*2*3*4*5*...*N)里有多少个5其实可以转化成:
N!中:是5的倍数的数+是5^2的倍数的数+5^3.....
如50!:
含有10个5的倍数的数:5,15,20,25,30,35,40,45,50 【50/5=10】
含有2个5^2的倍数的数:25,50【50/(5^2)=2】
可见N!中一共有12个5相乘,那么尾0也必有12个
用到了一个数论知识:
若p是质数,p<=n,则n!是p的倍数,设p^x是p在n!内的最高幂,则
x=[n/p]+[n/p^2]+[n/p^3]+............;
而且[n/(ab)]=[[n/a]/b]
#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstdio>
using namespace std;
typedef long long ll;
const int maxn=1e5+5;
const int INF=0x3f3f3f3f;
int main(){
ll n,t,sum;
cin>>t;
while(t--){
cin>>n;
sum=0;
while(n>=5){
sum+=n/5;
n/=5;
}
cout<<sum<<endl;
}
return 0;
}