【trick&&吐槽】
鸽巢原理是证明的好方法!
【题意】
对于一个点数为n(3000)的图
让你求出其中是否存在 "一条边没有的三元对" 或者 "三条边的三元对"
【分析】
https://en.wikipedia.org/wiki/Ramsey%27s_theorem
在组合数学上,拉姆齐(Ramsey)定理,又称拉姆齐二染色定理,是要解决以下的问题:要找这样一个最小的数 n,使得 n 个人中必定有 k 个人互相认识或 k 个人互不相识。
这个定理以弗兰克·普伦普顿·拉姆齐命名,1930年他在论文On a Problem in Formal Logic(《形式逻辑上的一个问题》)证明了R(3,3)=6。
证明:在一个 n = 6的完全图内,每边涂上红或蓝色,必然有一个红色的三角形或蓝色的三角形。
任意选取一个端点P,它有5条边和其他端点相连。
根据鸽巢原理,5条边的颜色至少有3条相同,不失一般性设这种颜色是红色。
在这3条边除了 P以外的3个端点,它们互相连结的边有3条。
若这3条边中任何一条是红色,这条边的两个端点和 P相连的2边便组成一个红色三角形。
若这3条边中任何一条都不是红色,它们必然是蓝色,因此,它们组成了一个蓝色三角形。
红色-有边
蓝色-无边
于是得证
/