HDU6152-Friend-Graph(拉姆齐(Ramsey)定理)

博客介绍了拉姆齐定理在图论中的应用,通过鸽巢原理证明了在一定数量的节点中,必然存在没有边的三元对或有三条边的三元对。内容探讨了完全图的染色问题,揭示了在3000个节点的图中寻找特定结构的三元子集的条件。
摘要由CSDN通过智能技术生成

 

【trick&&吐槽】

鸽巢原理是证明的好方法!

【题意】

对于一个点数为n(3000)的图

让你求出其中是否存在 "一条边没有的三元对" 或者 "三条边的三元对"

【分析】

https://en.wikipedia.org/wiki/Ramsey%27s_theorem

在组合数学上,拉姆齐(Ramsey)定理,又称拉姆齐二染色定理,是要解决以下的问题:要找这样一个最小的数 n,使得 n 个人中必定有 k 个人互相认识或 k 个人互不相识。

这个定理以弗兰克·普伦普顿·拉姆齐命名,1930年他在论文On a Problem in Formal Logic(《形式逻辑上的一个问题》)证明了R(3,3)=6。

证明:在一个 n = 6的完全图内,每边涂上红或蓝色,必然有一个红色的三角形或蓝色的三角形。

任意选取一个端点P,它有5条边和其他端点相连。

根据鸽巢原理,5条边的颜色至少有3条相同,不失一般性设这种颜色是红色。

在这3条边除了 P以外的3个端点,它们互相连结的边有3条。

若这3条边中任何一条是红色,这条边的两个端点和 P相连的2边便组成一个红色三角形。

若这3条边中任何一条都不是红色,它们必然是蓝色,因此,它们组成了一个蓝色三角形。

红色-有边

蓝色-无边

于是得证


/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值