10. 贪心算法的实现与特性

贪心算法

贪心算法 Greedy

贪心算法是一种在每一步选择中都采取在当前状态下最好或最优(最有利)的选择,从而希望导致结果是全局最好或最优的算法。

贪心算法与动态规划的不同在于它对每个子问题的解决方案都做出选择,不能回退。动态规划会保存以前的运算结果,并根据以前的结果对当前进行选择,有回退功能。

- 贪心:当下做局部最优判断
- 回溯:能够回退
- 动态规划:最优判断 + 回退

经常有同学会思考,每次我当下选择最好的,会不会全局就是最优的,以及我们中文有很多成语,就来解释这样的情况。比方说:只顾眼前,或者不考虑未来,或者说极端一点的成语:鼠目寸光。那么这也就造就了这种方法的话其实有一定的局限性。我想大部分人其实也就知道贪心算法的话,尤其是最基础的贪心,每次当下情况下找最优不一定能够达到全局最优的情况。但是在某些时候可以,我们就可以用所谓的贪心算法。以及在很多情况下的话,贪心算法在某一步可以用贪心,然后在全局的话再假设一个搜索递归或者是动态规划类似于这种。

贪心法可以解决一些最优化问题,如:求图中的最小生成树、求哈夫曼编码等。然而对于工程和生活中的问题,贪心算法一般不能得到我们所要求的答案。

一旦一个问题可以通过贪心法来解决,那么贪心法一般是解决这个问题的最好办法。由于贪心法的高效性以及其所求得的答案比较接近最优结果,贪心法也可以用作辅助算法或者直接解决一些要求结果不特别精准的问题。

实战案例

Coin Change 特别版本:

https://leetcode-cn.com/problems/coin-change/

当硬币可选集合固定:Coins = [20, 10, 5, 1]

求最少可以几个硬币拼出总数。比如 total = 36

image
那么我们看这时候就可以用一种贪心法。

为什么可以用贪心法呢?就是因为 20 10 5 1 前面的硬币依次是后面这些硬币的倍数。所以如果你需要用两个 10 或者 四个 5 的话,你肯定还不如用一个 20 ,因为后面这些都是整除前面最大的硬币的。在这种情况下的话,那么可以从数学上来证明贪心法的话,就每次用最大的即可。因为既然你能用20的话,你要是选后面的肯定这些不会优于直接选20的情况。那么很多时候的话,你会发现在这种特殊的情况下,贪心法是成立的。

但是要举出反例的话也是很容易的,这里的话用贪心法的一个特点就是有它所谓的特殊性。这里的特殊性指的是这个硬币的话有整除的关系。所以能用贪心法,但是在大部分情况下,其实不能用贪心法的。假设这个硬币不再是 20 10 5 1这种有整除性关系的时候。这里举一个反例:

image

image

何种情况下用到贪心算法?

使用贪心算法的场景

简单第说,问题能够分解成子问题来解决,子问题的最优解能递推到最终问题的最优解。这种子问题最优解称为最优子结构。

image

部分图片来源于网络,版权归原作者,侵删。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值